用于视频对象分割(VOS)的现有最先进方法(VOS)学习帧之间的低级像素到像素对应关系,以在视频中传播对象掩码。这需要大量的密集注释的视频数据,这是昂贵的注释,并且由于视频内的帧是高度相关的,因此由于视频内的帧具有很大冗余。鉴于此,我们提出了HODOR:一种新的方法,通过有效地利用被帮助的静态图像来理解对象外观和场景上下文来解决VOS的新方法。我们将来自图像帧的对象实例和场景信息编码为强大的高级描述符,然后可以用于重新划分不同帧中的这些对象。因此,与没有视频注释培训的现有方法相比,HODOR在DAVIS和YOUTUBE-VOS基准上实现了最先进的性能。如果没有任何架构修改,HODOR也可以通过利用循环一致性围绕单个注释的视频帧周围的视频上下文学习,而其他方法依赖于密集,则时间上一致的注释。
translated by 谷歌翻译
由于其在建模复杂操作方面的性能和灵活性,变压器在计算机视觉中变得普遍。特别重要的是“交叉注意”操作,它允许通过参与任意大小的输入功能集来学习一个向量表示(例如,图像中的对象)。最近,提出了“掩盖注意力”,其中给定的对象表示仅关注那些对象的分割掩码处于活动状态的图像像素功能。这种注意力的专业证明对各种图像和视频细分任务有益。在本文中,我们提出了另一种专业化的注意力,该专业能够通过“软遮罩”(具有连续遮罩概率而不是二进制值的那些软遮罩)参加,并且通过这些掩码概率也可以差异化,从而允许学习掩模用于注意的掩模。在网络中无需直接损失监督。这对于多种应用程序可能很有用。具体而言,我们对弱监督视频对象细分(VOS)的任务采用了“可区分的软掩盖注意力”,在该任务中,我们为VOS开发了一个基于变压器的网络,该网络仅需要单个带注释的图像框架,但也可以仅带有一个带注释的框架的视频中的循环一致性培训受益。尽管没有标记的框架中的口罩没有损失,但由于我们的新型注意力表述,该网络仍然能够在这些框架中细分对象。代码:https://github.com/ali2500/hodor/blob/main/main/hodor/modelling/encoder/soft_masked_attention.py
translated by 谷歌翻译
视频实例分割(VIS)在视频序列中共同处理多对象检测,跟踪和分割。过去,VIS方法反映了这些子任务在其建筑设计中的碎片化,因此在关节溶液上错过了这些子任务。变形金刚最近允许将整个VIS任务作为单个设定预测问题进行。然而,现有基于变压器的方法的二次复杂性需要较长的训练时间,高内存需求和处理低音尺度特征地图的处理。可变形的注意力提供了更有效的替代方案,但尚未探索其对时间域或分段任务的应用。在这项工作中,我们提出了可变形的Vis(Devis),这是一种利用可变形变压器的效率和性能的VIS方法。为了在多个框架上共同考虑所有VIS子任务,我们使用实例感知对象查询表示时间尺度可变形。我们进一步介绍了带有多尺度功能的新图像和视频实例蒙版头,并通过多提示剪辑跟踪执行近乎对方的视频处理。 Devis减少了内存和训练时间要求,并在YouTube-Vis 2021以及具有挑战性的OVIS数据集上实现了最先进的结果。代码可在https://github.com/acaelles97/devis上找到。
translated by 谷歌翻译
We propose a novel solution for semi-supervised video object segmentation. By the nature of the problem, available cues (e.g. video frame(s) with object masks) become richer with the intermediate predictions. However, the existing methods are unable to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learn to read relevant information from all available sources. In our framework, the past frames with object masks form an external memory, and the current frame as the query is segmented using the mask information in the memory. Specifically, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. Contrast to the previous approaches, the abundant use of the guidance information allows us to better handle the challenges such as appearance changes and occlussions. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (overall score of 79.4 on Youtube-VOS val set,
translated by 谷歌翻译
尽管从研究界获得了重大关注,但单眼视频中分段和跟踪对象的任务仍然有很多改进空间。现有工程同时证明了各种图像级分段任务的扩张和可变形卷曲的功效。这使得这种卷积的3D扩展也应该产生视频级分段任务的3D扩展。但是,这方面尚未在现有文献中彻底探讨。在本文中,我们提出了动态扩张卷积(D ^ 2Conv3d):一种新型类型的卷积,其汲取了来自扩张和可变形卷曲的灵感,并将它们延伸到3D(时空)域。我们通过实验表明,D ^ 2CONV3D可用于通过简单地使用D ^ 2CONV3D作为标准卷积的替代品来改进多个视频分段相关基准的多个3D CNN架构的性能。我们进一步表明,D ^ 2CONV3D OUT-upial延伸的现有扩张和可变形卷曲的速度扩展到3D。最后,我们在Davis 2016无监督的视频对象分段基准测试中设置了新的最先进的。代码在https://github.com/schmiddo/d2conv3d上公开提供。
translated by 谷歌翻译
人类可以轻松地在不知道它们的情况下段移动移动物体。从持续的视觉观测中可能出现这种对象,激励我们与未标记的视频同时进行建模和移动。我们的前提是视频具有通过移动组件相关的相同场景的不同视图,并且右区域分割和区域流程将允许相互视图合成,其可以从数据本身检查,而无需任何外部监督。我们的模型以两个单独的路径开头:一种外观途径,其输出单个图像的基于特征的区域分割,以及输出一对图像的运动功能的运动路径。然后,它将它们绑定在称为段流的联合表示中,该分段流汇集在每个区域上的流程偏移,并提供整个场景的移动区域的总表征。通过培训模型,以最小化基于段流的视图综合误差,我们的外观和运动路径自动学习区域分割和流量估计,而不分别从低级边缘或光学流量构建它们。我们的模型展示了外观途径中对象的令人惊讶的出现,超越了从图像的零射对对象分割上的工作,从带有无监督的测试时间适应的视频移动对象分割,并通过监督微调,通过监督微调。我们的工作是来自视频的第一个真正的零点零点对象分段。它不仅开发了分割和跟踪的通用对象,而且还优于无增强工程的基于普遍的图像对比学习方法。
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
以对象为中心的表示是通过提供柔性抽象可以在可以建立的灵活性抽象来实现更系统的推广的有希望的途径。最近的简单2D和3D数据集的工作表明,具有对象的归纳偏差的模型可以学习段,并代表单独的数据的统计结构中的有意义对象,而无需任何监督。然而,尽管使用越来越复杂的感应偏差(例如,用于场景的尺寸或3D几何形状),但这种完全无监督的方法仍然无法扩展到不同的现实数据。在本文中,我们采取了弱监督的方法,并专注于如何使用光流的形式的视频数据的时间动态,2)调节在简单的对象位置上的模型可以用于启用分段和跟踪对象在明显更现实的合成数据中。我们介绍了一个顺序扩展,以便引入我们训练的推出,我们训练用于预测现实看的合成场景的光流,并显示调节该模型的初始状态在一小组提示,例如第一帧中的物体的质量中心,是足以显着改善实例分割。这些福利超出了新型对象,新颖背景和更长的视频序列的培训分配。我们还发现,在推论期间可以使用这种初始状态调节作为对特定物体或物体部分的型号查询模型,这可能会为一系列弱监管方法铺平,并允许更有效的互动训练有素的型号。
translated by 谷歌翻译
Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, due to the lack of instance understanding ability, the above approaches are oftentimes brittle to large appearance variations or viewpoint changes resulted from the movement of objects and cameras. In this paper, we argue that instance understanding matters in VOS, and integrating it with memory-based matching can enjoy the synergy, which is intuitively sensible from the definition of VOS task, \ie, identifying and segmenting object instances within the video. Towards this goal, we present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank. We employ the well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-augmented matching is further performed. In addition, we introduce a multi-path fusion block to effectively combine the memory readout with multi-scale features from the instance segmentation decoder, which incorporates high-resolution instance-aware features to produce final segmentation results. Our method achieves state-of-the-art performance on DAVIS 2016/2017 val (92.6% and 87.1%), DAVIS 2017 test-dev (82.8%), and YouTube-VOS 2018/2019 val (86.3% and 86.3%), outperforming alternative methods by clear margins.
translated by 谷歌翻译
视频对象细分(VOS)是视频理解的基础。基于变压器的方法在半监督VOS上显示出显着的性能改善。但是,现有的工作面临着挑战在彼此近距离接近视觉上类似对象的挑战。在本文中,我们提出了一种新型的双边注意力变压器,以进行半监督VO的运动出现空间(蝙蝠侠)。它通过新型的光流校准模块在视频中捕获对象运动,该模块将分割面膜与光流估计融合在一起,以改善对象内光流平滑度并减少物体边界处的噪声。然后在我们的新型双边注意力中采用了这种校准的光流,该流动流在相邻双边空间中的查询和参考帧之间的对应关系考虑,考虑到运动和外观。广泛的实验通过在所有四个流行的VOS基准上胜过所有现有最新的实验:YouTube-VOS 2019(85.0%),YouTube-VOS 2018(85.3%),Davis 2017VAL/TESTDEV(86.2.2 %/82.2%)和戴维斯(Davis)2016(92.5%)。
translated by 谷歌翻译
参照视频对象分割(R-VOS)是一个新兴的跨通道任务,其目的是分割目标对象中的所有的视频帧称为一个语言表达式。在这项工作中,我们提出了一个简单并在变压器建成统一的框架,称为ReferFormer。它认为在语言查询,并直接参加到视频帧中的最相关的区域。具体而言,我们引入一个小套空调的语言作为输入Transformer对象的查询。通过这种方式,所有的查询有义务仅发现指的对象。他们最终都转化为动态的内核,其捕捉的关键对象级信息,并发挥卷积过滤器的作用,生成特征地图分割口罩。对象跟踪通过连接在帧之间相应的查询自然实现。这种机制极大地简化了管道和终端到终端的框架是从以前的方法不同显著。在REF-YouTube的VOS,REF-DAVIS17大量的实验,A2D-句子和JHMDB-句显示ReferFormer的有效性。上REF-YouTube的VOS,参见-前达到55.6J&F与RESNET-50主链而不花哨,这超过了8.4点之前的状态的最先进的性能。此外,与强斯文 - 大型骨干,ReferFormer实现了所有现有的方法中最好的J&62.4 F。歼&F度量可以通过采用一个简单的后处理技术来进一步升压到63.3。此外,我们分别显示55.0地图和43.7地图上A2D-句andJHMDB-句令人印象深刻的结果,这显著优于大幅度以前的方法。代码是公开的,在https://github.com/wjn922/ReferFormer。
translated by 谷歌翻译
Many of the recent successful methods for video object segmentation (VOS) are overly complicated, heavily rely on fine-tuning on the first frame, and/or are slow, and are hence of limited practical use. In this work, we propose FEELVOS as a simple and fast method which does not rely on fine-tuning. In order to segment a video, for each frame FEELVOS uses a semantic pixel-wise embedding together with a global and a local matching mechanism to transfer information from the first frame and from the previous frame of the video to the current frame. In contrast to previous work, our embedding is only used as an internal guidance of a convolutional network. Our novel dynamic segmentation head allows us to train the network, including the embedding, end-to-end for the multiple object segmentation task with a cross entropy loss. We achieve a new state of the art in video object segmentation without fine-tuning with a J &F measure of 71.5% on the DAVIS 2017 validation set. We make our code and models available at https://github.com/tensorflow/ models/tree/master/research/feelvos.
translated by 谷歌翻译
speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
translated by 谷歌翻译
跨图像建立视觉对应是一项具有挑战性且必不可少的任务。最近,已经提出了大量的自我监督方法,以更好地学习视觉对应的表示。但是,我们发现这些方法通常无法利用语义信息,并且在低级功能的匹配方面过度融合。相反,人类的视觉能够将不同的物体区分为跟踪的借口。受此范式的启发,我们建议学习语义意识的细粒对应关系。首先,我们证明语义对应是通过一组丰富的图像级别自我监督方法隐式获得的。我们进一步设计了一个像素级的自我监督学习目标,该目标专门针对细粒的对应关系。对于下游任务,我们将这两种互补的对应表示形式融合在一起,表明它们是协同增强性能的。我们的方法超过了先前的最先进的自我监督方法,使用卷积网络在各种视觉通信任务上,包括视频对象分割,人姿势跟踪和人类部分跟踪。
translated by 谷歌翻译
视频分割,即将视频帧分组到多个段或对象中,在广泛的实际应用中扮演关键作用,例如电影中的视觉效果辅助,自主驾驶中的现场理解,以及视频会议中的虚拟背景创建,名称一些。最近,由于计算机愿景中的联系复兴,一直存在众多深度学习的方法,这一直专用于视频分割并提供引人注目的性能。在这项调查中,通过引入各自的任务设置,背景概念,感知需要,开发历史,以及开发历史,综合审查这一领域的两种基本研究,即在视频和视频语义分割中,即视频和视频语义分割中的通用对象分段(未知类别)。主要挑战。我们还提供关于两种方法和数据集的代表文学的详细概述。此外,我们在基准数据集中呈现了审查方法的定量性能比较。最后,我们指出了这一领域的一套未解决的开放问题,并提出了进一步研究的可能机会。
translated by 谷歌翻译
计算机视觉任务可以从估计突出物区域和这些对象区域之间的相互作用中受益。识别对象区域涉及利用预借鉴模型来执行对象检测,对象分割和/或对象姿势估计。但是,由于以下原因,在实践中不可行:1)预用模型的训练数据集的对象类别可能不会涵盖一般计算机视觉任务的所有对象类别,2)佩戴型模型训练数据集之间的域间隙并且目标任务的数据集可能会影响性能,3)预磨模模型中存在的偏差和方差可能泄漏到导致无意中偏置的目标模型的目标任务中。为了克服这些缺点,我们建议利用一系列视频帧捕获一组公共对象和它们之间的相互作用的公共基本原理,因此视频帧特征之间的共分割的概念可以用自动的能力装配模型专注于突出区域,以最终的方式提高潜在的任务的性能。在这方面,我们提出了一种称为“共分割激活模块”(COSAM)的通用模块,其可以被插入任何CNN,以促进基于CNN的任何CNN的概念在一系列视频帧特征中的关注。我们在三个基于视频的任务中展示Cosam的应用即1)基于视频的人Re-ID,2)视频字幕分类,并证明COSAM能够在视频帧中捕获突出区域,从而引导对于显着的性能改进以及可解释的关注图。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
我们提出了Minvis,这是一个最小的视频实例细分(VIS)框架,该框架既可以通过基于视频的体系结构也不是培训程序来实现最先进的VIS性能。通过仅培训基于查询的图像实例分割模型,MINVIS在具有挑战性的VIS数据集上优于先前的最佳结果,超过10%的AP。由于Minvis将培训视频中的框架视为独立图像,因此我们可以在培训视频中大量示例带有带有任何修改的培训视频框架。 MINVIS只有1%的标签框架优于表现,或与YouTube-VIS 2019/2021上的完全监督的最新方法相媲美。我们的主要观察结果是,受过训练以歧视框架内对象实例的查询在时间上是一致的,可以用于跟踪实例,而无需任何手动设计的启发式方法。因此,MINVIS具有以下推理管道:我们首先将基于查询的图像实例分割应用于视频帧。然后,通过相应查询的两部分匹配来跟踪分段的实例。此推论是以在线方式完成的,无需立即处理整个视频。因此,MINVI具有降低标签成本和记忆要求的实际优势,同时又不牺牲VIS性能。代码可在以下网址找到:https://github.com/nvlabs/minvis
translated by 谷歌翻译
半监控视频对象分割(VOS)是指在近年来在第一帧中的注释中分割剩余帧中的目标对象,该帧近年来已经积极研究。关键挑战在于找到利用过去框架的时空上下文的有效方法来帮助学习当前帧的判别目标表示。在本文中,我们提出了一种具有专门设计的交互式变压器的新型暹罗网络,称为SITVOS,以实现从历史到当前帧的有效上下文传播。从技术上讲,我们使用变换器编码器和解码器单独处理过去的帧和当前帧,即,编码器从过去的帧中对目标对象的强大的时空上下文进行编码,而解码器将当前帧的特征嵌入为查询。从编码器输出检索目标。为了进一步增强目标表示,设计了一种特征交互模块(FIM)以促进编码器和解码器之间的信息流。此外,我们使用暹罗架构来提取过去和当前帧的骨干功能,它能够重用并且比现有方法更有效。三个挑战基准测试的实验结果验证了SITVOS在最先进的方法上的优越性。
translated by 谷歌翻译
视觉世界可以以稀疏相互作用的不同实体来嘲笑。在动态视觉场景中发现这种组合结构已被证明对端到端的计算机视觉方法有挑战,除非提供明确的实例级别的监督。利用运动提示的基于老虎机的模型最近在学习代表,细分和跟踪对象的情况下没有直接监督显示了巨大的希望,但是它们仍然无法扩展到复杂的现实世界多对象视频。为了弥合这一差距,我们从人类发展中汲取灵感,并假设以深度信号形式的场景几何形状的信息可以促进以对象为中心的学习。我们介绍了一种以对象为中心的视频模型SAVI ++,该模型经过训练,可以预测基于插槽的视频表示的深度信号。通过进一步利用模型缩放的最佳实践,我们能够训练SAVI ++以细分使用移动摄像机记录的复杂动态场景,其中包含在自然主义背景上具有不同外观的静态和移动对象,而无需进行分割监督。最后,我们证明,通过使用从LIDAR获得的稀疏深度信号,Savi ++能够从真实World Waymo Open DataSet中的视频中学习新兴对象细分和跟踪。
translated by 谷歌翻译