Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, due to the lack of instance understanding ability, the above approaches are oftentimes brittle to large appearance variations or viewpoint changes resulted from the movement of objects and cameras. In this paper, we argue that instance understanding matters in VOS, and integrating it with memory-based matching can enjoy the synergy, which is intuitively sensible from the definition of VOS task, \ie, identifying and segmenting object instances within the video. Towards this goal, we present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank. We employ the well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-augmented matching is further performed. In addition, we introduce a multi-path fusion block to effectively combine the memory readout with multi-scale features from the instance segmentation decoder, which incorporates high-resolution instance-aware features to produce final segmentation results. Our method achieves state-of-the-art performance on DAVIS 2016/2017 val (92.6% and 87.1%), DAVIS 2017 test-dev (82.8%), and YouTube-VOS 2018/2019 val (86.3% and 86.3%), outperforming alternative methods by clear margins.
translated by 谷歌翻译
最近,几种基于空间内存的方法已经验证了将中间框架及其面具作为内存有助于将视频中的目标对象细分目标对象。但是,它们主要集中于当前帧和内存框架之间的更好匹配,而无需明确关注内存质量。因此,较差的分割面罩的框架容易被记住,这导致了分割掩盖误差问题并进一步影响分割性能。此外,随着帧数的增长,内存框架的线性增加还限制了模型处理长视频的能力。为此,我们提出了一个质量感知的动态内存网络(QDMN)来评估每个帧的分割质量,从而使内存库可以选择性地存储准确的分段框架,以防止误差积累问题。然后,我们将细分质量与时间一致性相结合,以动态更新内存库以提高模型的实用性。我们的QDMN没有任何铃铛和哨子,在戴维斯和YouTube-Vos基准测试中都取得了新的最新性能。此外,广泛的实验表明,提议的质量评估模块(QAM)可以作为通用插件应用于基于内存的方法,并显着提高性能。我们的源代码可在https://github.com/workforai/qdmn上找到。
translated by 谷歌翻译
半监督视频对象分割(VOS)的任务已经大大提升,最先进的性能是通过密集的基于匹配的方法进行的。最近的方法利用时空存储器(STM)网络并学习从所有可用源检索相关信息,其中使用对象掩模的过去帧形成外部存储器,并且使用存储器中的掩码信息分段为查询作为查询的当前帧进行分割。然而,当形成存储器并执行匹配时,这些方法仅在忽略运动信息的同时利用外观信息。在本文中,我们倡导\ emph {motion信息}的返回,并提出了一个用于半监督VOS的运动不确定性感知框架(MUMET)。首先,我们提出了一种隐含的方法来学习相邻帧之间的空间对应,构建相关成本卷。在构建密集的对应期间处理遮挡和纹理区域的挑战性案例,我们将不确定性纳入密集匹配并实现运动不确定性感知特征表示。其次,我们介绍了运动感知的空间注意模块,以有效地融合了语义特征的运动功能。关于具有挑战性的基准的综合实验表明,\ TextBF {\ Textit {使用少量数据并将其与强大的动作信息组合可以带来显着的性能Boost}}。我们只使用Davis17达到$ \ Mathcal {} $培训{76.5 \%} $ \ mathcal {f} $培训,这显着优于低数据协议下的\ texit {sota}方法。 \ textit {代码将被释放。}
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
对于在线视频实例分段(VI),以有效的方式充分利用来自先前帧的信息对于实时应用是必不可少的。最先前的方法遵循一个两级方法,需要额外的计算,例如RPN和Roialign,并且在VI中的所有子任务中没有完全利用视频中的可用信息。在本文中,我们提出了一种基于网格结构特征表示构建的在线VI的新颖单级框架。基于网格的功能允许我们使用完全卷积的网络进行实时处理,并且还可以轻松地重用和共享不同组件内的功能。我们还介绍了从可用帧中聚合信息的协同操作模块,以便丰富VI中所有子任务的功能。我们的设计充分利用了以高效的方式为所有任务的网格形式提供了以前的信息,我们在YouTube上实现了新的最先进的准确性(38.6 AP和36.9 AP)和速度(40.0fps) - 2019年和2021年在线VIS方法之间的数据集。
translated by 谷歌翻译
在统一框架中为检测和跟踪建模的时间信息已被证明是视频实例分割(VIS)的有希望的解决方案。但是,如何有效地将时间信息纳入在线模型仍然是一个空旷的问题。在这项工作中,我们提出了一个名为Inspeacity(IAI)的新的在线Vis范式,该范式以有效的方式对检测和跟踪进行建模。详细说明,IAI采用了一个新颖的识别模块来明确预测跟踪实例的标识号。为了传递时间信息跨框架,IAI使用了结合当前特征和过去嵌入的关联模块。值得注意的是,IAI可以与不同的图像模型集成。我们对三个VIS基准进行了广泛的实验。 IAI在YouTube-VIS-2019(Resnet-101 41.9地图)和YouTube-VIS-2021(Resnet-50 37.7地图)上胜过所有在线竞争对手。令人惊讶的是,在更具挑战性的OVI上,IAI实现了SOTA性能(20.3地图)。代码可从https://github.com/zfonemore/iai获得
translated by 谷歌翻译
Recently, the joint learning framework (JOINT) integrates matching based transductive reasoning and online inductive learning to achieve accurate and robust semi-supervised video object segmentation (SVOS). However, using the mask embedding as the label to guide the generation of target features in the two branches may result in inadequate target representation and degrade the performance. Besides, how to reasonably fuse the target features in the two different branches rather than simply adding them together to avoid the adverse effect of one dominant branch has not been investigated. In this paper, we propose a novel framework that emphasizes Learning to Learn Better (LLB) target features for SVOS, termed LLB, where we design the discriminative label generation module (DLGM) and the adaptive fusion module to address these issues. Technically, the DLGM takes the background-filtered frame instead of the target mask as input and adopts a lightweight encoder to generate the target features, which serves as the label of the online few-shot learner and the value of the decoder in the transformer to guide the two branches to learn more discriminative target representation. The adaptive fusion module maintains a learnable gate for each branch, which reweighs the element-wise feature representation and allows an adaptive amount of target information in each branch flowing to the fused target feature, thus preventing one branch from being dominant and making the target feature more robust to distractor. Extensive experiments on public benchmarks show that our proposed LLB method achieves state-of-the-art performance.
translated by 谷歌翻译
最近,基于内存的方法显示了半监督视频对象分割的有希望的结果。这些方法可以通过对先前掩码的经常更新的内存来预测对象蒙版逐帧。与这种人均推断不同,我们通过将视频对象分割视为夹子掩盖传播来研究替代角度。在此每次CLIP推断方案中,我们使用一个间隔更新内存,并同时处理内存更新之间的一组连续帧(即剪辑)。该方案提供了两个潜在的好处:通过剪辑级优化和效率增益的准确性增益,通过平行计算多个帧。为此,我们提出了一种针对人均推理量身定制的新方法。具体而言,我们首先引入夹具操作,以根据CLIP相关性来完善特征。此外,我们采用了一种渐进匹配机制来在剪辑中有效地通过信息通行。通过两个模块的协同作用和新提议的每盘培训,我们的网络在YouTube-Vos 2018/2019 Val(84.6%和84.6%)和Davis 2016/2017 Val(91.9 Val(91.9 %和86.1%)。此外,我们的模型在不同的内存更新间隔内显示出巨大的速度准确性权衡取舍,从而带来了巨大的灵活性。
translated by 谷歌翻译
现有的基于匹配的方法通过从像素级内存中检索支持功能执行视频对象细分(VOS),而某些像素可能会遭受内存中缺乏对应关系(即看不见),这不可避免地限制了他们的细分性能。在本文中,我们提出了一个两流网络(TSN)。我们的TSN包含(i)带有常规像素级内存的像素流,以根据其像素级内存检索分割可见像素。 (ii)一个看不见的像素的实例流,其中对实例的整体理解是在动态分割头上以基于目标实例的特征进行条件的。 (iii)一个像素划分模块生成路由图,将两个流的输出嵌入在一起融合在一起。紧凑的实例流有效地提高了看不见的像素的分割精度,同时将两个流与自适应路由图融合在一起,导致整体性能提升。通过广泛的实验,我们证明了我们提出的TSN的有效性,并且还报告了2018年YouTube-VOS的最先进性能为86.1%,在Davis-2017验证案例中为87.5%。
translated by 谷歌翻译
In this paper we present a new computer vision task, named video instance segmentation. The goal of this new task is simultaneous detection, segmentation and tracking of instances in videos. In words, it is the first time that the image instance segmentation problem is extended to the video domain. To facilitate research on this new task, we propose a large-scale benchmark called YouTube-VIS, which consists of 2,883 high-resolution YouTube videos, a 40-category label set and 131k high-quality instance masks.In addition, we propose a novel algorithm called Mask-Track R-CNN for this task. Our new method introduces a new tracking branch to Mask R-CNN to jointly perform the detection, segmentation and tracking tasks simultaneously. Finally, we evaluate the proposed method and several strong baselines on our new dataset. Experimental results clearly demonstrate the advantages of the proposed algorithm and reveal insight for future improvement. We believe the video instance segmentation task will motivate the community along the line of research for video understanding.
translated by 谷歌翻译
近年来,视频实例细分(VIS)在很大程度上是通过离线模型提出的,而在线模型由于其性能较低而逐渐吸引了关注。但是,在线方法在处理长期视频序列和正在进行的视频中具有固有的优势,而由于计算资源的限制,离线模型失败了。因此,如果在线模型可以比离线模型获得可比甚至更好的性能,那将是非常可取的。通过解剖当前的在线模型和离线模型,我们证明了性能差距的主要原因是由特征空间中不同实例之间相似外观引起的框架之间存在错误的关联。观察到这一点,我们提出了一个基于对比度学习的在线框架,该框架能够学习更多的歧视实例嵌入,以进行关联,并充分利用历史信息以达到稳定性。尽管它很简单,但我们的方法在三个基准测试上都优于在线和离线方法。具体来说,我们在YouTube-VIS 2019上实现了49.5 AP,比先前的在线和离线艺术分别取得了13.2 AP和2.1 AP的显着改善。此外,我们在OVIS上实现了30.2 AP,这是一个更具挑战性的数据集,具有大量的拥挤和遮挡,超过了14.8 AP的先前艺术。提出的方法在第四次大规模视频对象分割挑战(CVPR2022)的视频实例细分轨道中赢得了第一名。我们希望我们方法的简单性和有效性以及对当前方法的见解,可以阐明VIS模型的探索。
translated by 谷歌翻译
分割高度重叠的图像对象是具有挑战性的,因为图像上的真实对象轮廓和遮挡边界之间通常没有区别。与先前的实例分割方法不同,我们将图像形成模拟为两个重叠层的组成,并提出了双层卷积网络(BCNET),其中顶层检测到遮挡对象(遮挡器),而底层则渗透到部分闭塞实例(胶囊)。遮挡关系与双层结构的显式建模自然地将遮挡和遮挡实例的边界解散,并在掩模回归过程中考虑了它们之间的相互作用。我们使用两种流行的卷积网络设计(即完全卷积网络(FCN)和图形卷积网络(GCN))研究了双层结构的功效。此外,我们通过将图像中的实例表示为单独的可学习封闭器和封闭者查询,从而使用视觉变压器(VIT)制定双层解耦。使用一个/两个阶段和基于查询的对象探测器具有各种骨架和网络层选择验证双层解耦合的概括能力,如图像实例分段基准(可可,亲戚,可可)和视频所示实例分割基准(YTVIS,OVIS,BDD100K MOTS),特别是对于重闭塞病例。代码和数据可在https://github.com/lkeab/bcnet上找到。
translated by 谷歌翻译
We propose a novel solution for semi-supervised video object segmentation. By the nature of the problem, available cues (e.g. video frame(s) with object masks) become richer with the intermediate predictions. However, the existing methods are unable to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learn to read relevant information from all available sources. In our framework, the past frames with object masks form an external memory, and the current frame as the query is segmented using the mask information in the memory. Specifically, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. Contrast to the previous approaches, the abundant use of the guidance information allows us to better handle the challenges such as appearance changes and occlussions. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (overall score of 79.4 on Youtube-VOS val set,
translated by 谷歌翻译
本文研究了如何实现更好,更有效的学习学习,以解决在有挑战性的多对象方案下应对半监督视频对象细分。最先进的方法学会用单个正对象解码特征,因此必须在多对象方案下分别匹配和分割每个目标,从而多次消耗计算资源。为了解决问题,我们提出了一个与变压器(AOT)方法的关联对象,以共同且协作匹配和解码多个对象。详细说明,AOT采用识别机制将多个目标关联到相同的高维嵌入空间中。因此,我们可以同时处理多个对象的匹配和分割解码,就像处理单个对象一样有效地解码。为了充分模型多对象关联,设计了长期的短期变压器(LSTT)来构建层次匹配和传播。基于AOT,我们进一步提出了一个更灵活,更健壮的框架,将对象与可扩展的变压器(AOST)相关联,其中LSTT的可扩展版本旨在实现准确性效率折衷的运行时间适应。此外,AOST引入了更好的层次方式,以使识别和视力嵌入。我们对多对象和单对象基准进行了广泛的实验,以检查AOT系列框架。与最先进的竞争对手相比,我们的方法可以保持运行时效率的时间和卓越的性能。值得注意的是,我们在三个受欢迎的基准测试(即YouTube-VOS(86.5%),Davis 2017 Val/Test/Test(87.0%/84.7%)和Davis 2016(93.0%)(93.0%)上,我们实现了新的最先进性能。项目页面:https://github.com/z-x-yang/aot。
translated by 谷歌翻译
半监控视频对象分割(VOS)是指在近年来在第一帧中的注释中分割剩余帧中的目标对象,该帧近年来已经积极研究。关键挑战在于找到利用过去框架的时空上下文的有效方法来帮助学习当前帧的判别目标表示。在本文中,我们提出了一种具有专门设计的交互式变压器的新型暹罗网络,称为SITVOS,以实现从历史到当前帧的有效上下文传播。从技术上讲,我们使用变换器编码器和解码器单独处理过去的帧和当前帧,即,编码器从过去的帧中对目标对象的强大的时空上下文进行编码,而解码器将当前帧的特征嵌入为查询。从编码器输出检索目标。为了进一步增强目标表示,设计了一种特征交互模块(FIM)以促进编码器和解码器之间的信息流。此外,我们使用暹罗架构来提取过去和当前帧的骨干功能,它能够重用并且比现有方法更有效。三个挑战基准测试的实验结果验证了SITVOS在最先进的方法上的优越性。
translated by 谷歌翻译
我们提出XMEM,这是一种由Atkinson-Shiffrin Memory模型启发的统一功能存储器存储的长视频的视频对象分割体系结构。视频对象分割的先前工作通常仅使用一种类型的功能内存。对于超过一分钟的视频,单个功能内存模型紧密地链接了内存消耗和准确性。相比之下,遵循Atkinson-Shiffrin模型,我们开发了一种结构,该体系结构结合了多个独立但深厚的特征记忆存储:快速更新的感觉存储器,高分辨率的工作记忆和紧凑的长期记忆。至关重要的是,我们开发了一种记忆增强算法,该算法通常将主动使用的工作记忆元素合并为长期记忆,从而避免记忆爆炸并最大程度地减少长期预测的性能衰减。结合新的记忆阅读机制,XMEM在与最先进的方法(不适用于长视频上使用)相当的长视频时,XMEM大大超过了长效数据集上的最先进性能数据集。代码可从https://hkchengrex.github.io/xmem获得
translated by 谷歌翻译
视频实例分割(VIS)在视频序列中共同处理多对象检测,跟踪和分割。过去,VIS方法反映了这些子任务在其建筑设计中的碎片化,因此在关节溶液上错过了这些子任务。变形金刚最近允许将整个VIS任务作为单个设定预测问题进行。然而,现有基于变压器的方法的二次复杂性需要较长的训练时间,高内存需求和处理低音尺度特征地图的处理。可变形的注意力提供了更有效的替代方案,但尚未探索其对时间域或分段任务的应用。在这项工作中,我们提出了可变形的Vis(Devis),这是一种利用可变形变压器的效率和性能的VIS方法。为了在多个框架上共同考虑所有VIS子任务,我们使用实例感知对象查询表示时间尺度可变形。我们进一步介绍了带有多尺度功能的新图像和视频实例蒙版头,并通过多提示剪辑跟踪执行近乎对方的视频处理。 Devis减少了内存和训练时间要求,并在YouTube-Vis 2021以及具有挑战性的OVIS数据集上实现了最先进的结果。代码可在https://github.com/acaelles97/devis上找到。
translated by 谷歌翻译
随着深度学习的兴起,视频对象细分(VOS)取得了重大进展。但是,仍然存在一些棘手的问题,例如,类似的对象很容易混淆,很难找到微小的对象。为了解决这些问题并进一步提高VOS的性能,我们为这项任务提出了一个简单而有效的解决方案。在解决方案中,我们首先分析YouTube-VOS数据集的分布,并通过引入公共静态和视频分割数据集来补充数据集。然后,我们改善了具有不同特征的三个网络体系结构,并训练多个网络以学习视频中对象的不同特征。之后,我们使用一种简单的方法来集成所有结果,以确保不同的模型相互补充。最后,进行了微妙的后处理,以确保具有精确边界的准确视频对象分割。 YouTube-VOS数据集的大量实验表明,该建议的解决方案在YouTube-VOS 2022测试集上以86.1%的总分达到了最先进的性能,这是YouTube视频对象细分的第五名-VOS挑战2022。
translated by 谷歌翻译
视频实例分割旨在预测每个帧的对象分割掩码,并关联多个帧的实例。最近的端到端视频实例分割方法能够在直接并行序列解码/预测框架中共同执行对象分割和实例关联。尽管这些方法通常可以预测较高质量的对象分割掩码,但它们可能无法在具有挑战性的情况下与实例相关联,因为它们没有明确对相邻帧的时间实例一致性进行建模。我们提出了一个一致的端到端视频实例分割框架,并在框架间反复注意,以建模相邻帧的时间实例一致性和全局时间上下文。我们的广泛实验表明,框架间的重复注意显着提高了时间实例的一致性,同时保持对象分割掩模的质量。我们的模型在YouTubevis-2019(62.1 \%)和YouTubevis-2021(54.7 \%)数据集上都达到了最新的精度。此外,定量和定性结果表明,所提出的方法可以预测更具时间一致的实例分割掩码。
translated by 谷歌翻译
参照视频对象分割(R-VOS)是一个新兴的跨通道任务,其目的是分割目标对象中的所有的视频帧称为一个语言表达式。在这项工作中,我们提出了一个简单并在变压器建成统一的框架,称为ReferFormer。它认为在语言查询,并直接参加到视频帧中的最相关的区域。具体而言,我们引入一个小套空调的语言作为输入Transformer对象的查询。通过这种方式,所有的查询有义务仅发现指的对象。他们最终都转化为动态的内核,其捕捉的关键对象级信息,并发挥卷积过滤器的作用,生成特征地图分割口罩。对象跟踪通过连接在帧之间相应的查询自然实现。这种机制极大地简化了管道和终端到终端的框架是从以前的方法不同显著。在REF-YouTube的VOS,REF-DAVIS17大量的实验,A2D-句子和JHMDB-句显示ReferFormer的有效性。上REF-YouTube的VOS,参见-前达到55.6J&F与RESNET-50主链而不花哨,这超过了8.4点之前的状态的最先进的性能。此外,与强斯文 - 大型骨干,ReferFormer实现了所有现有的方法中最好的J&62.4 F。歼&F度量可以通过采用一个简单的后处理技术来进一步升压到63.3。此外,我们分别显示55.0地图和43.7地图上A2D-句andJHMDB-句令人印象深刻的结果,这显著优于大幅度以前的方法。代码是公开的,在https://github.com/wjn922/ReferFormer。
translated by 谷歌翻译