我们为图像分类提出了一个高度数据效率的主动学习框架。我们的新框架结合了:(1)卷积神经网络的无监督表示学习和(2)Gaussian Process(GP)方法,以实现高度数据和标记有效分类。此外,由于没有标签和(2)GP的贝叶斯性质所学的(1)功能,这两个元素对普遍且具有挑战性的阶级不平衡问题的敏感性不太敏感。 GP提供的不确定性估计可以通过根据不确定性对样本进行排名和选择性标记样品来表现出较高的不确定性,从而实现主动学习。我们将这种新颖的组合应用于Covid-19胸部X射线分类和Nerthus结肠镜检查分类的严重不平衡病例。我们只证明这一点。需要10%的标记数据来达到培训所有可用标签的准确性。我们还将模型架构和建议的框架应用于具有预期成功的更广泛的数据集。
translated by 谷歌翻译
我们介绍了有监督的对比度积极学习(SCAL),并根据功能相似性(功能IM)和基于主成分分析的基于特征重建误差(FRE)提出有效的活动学习策略,以选择具有不同特征表示的信息性数据示例。我们证明了我们提出的方法可实现最新的准确性,模型校准并减少在图像分类任务上平衡和不平衡数据集的主动学习设置中的采样偏差。我们还评估了模型的鲁棒性,从主动学习环境中不同查询策略得出的分配转移。使用广泛的实验,我们表明我们提出的方法的表现优于高性能密集型方法,从而使平均损坏误差降低了9.9%,在数据集偏移下的预期校准误差降低了7.2%,而AUROC降低了8.9%的AUROC。检测。
translated by 谷歌翻译
自动基于图像的疾病严重程度估计通常使用离散(即量化)严重性标签。由于图像含糊不清,因此通常很难注释离散标签。一个更容易的替代方法是使用相对注释,该注释比较图像对之间的严重程度。通过使用带有相对注释的学习对框架,我们可以训练一个神经网络,该神经网络估计与严重程度相关的等级分数。但是,所有可能对的相对注释都是过敏的,因此,适当的样品对选择是强制性的。本文提出了深层贝叶斯的主动学习与级别,该级别训练贝叶斯卷积神经网络,同时自动选择合适的对进行相对注释。我们通过对溃疡性结肠炎的内窥镜图像进行实验证实了该方法的效率。此外,我们确认我们的方法即使在严重的类失衡中也很有用,因为它可以自动从次要类中选择样本。
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
新的冠状病毒造成了超过一百万的死亡,并继续迅速传播。这种病毒靶向肺部,导致呼吸窘迫,这可以轻度或严重。肺的X射线或计算机断层扫描(CT)图像可以揭示患者是否感染Covid-19。许多研究人员正在尝试使用人工智能改善Covid-19检测。我们的动机是开发一种可以应对的自动方法,该方法可以应对标记数据的方案是耗时或昂贵的。在本文中,我们提出了使用依赖于Sobel边缘检测和生成对冲网络(GANS)的有限标记数据(SCLLD)的半监督分类来自动化Covid-19诊断。 GaN鉴别器输出是一种概率值,用于在这项工作中进行分类。建议的系统使用从Omid Hosparing收集的10,000 CT扫描培训,而公共数据集也用于验证我们的系统。将该方法与其他最先进的监督方法进行比较,例如高斯过程。据我们所知,这是第一次提出了对Covid-19检测的半监督方法。我们的系统能够从有限标记和未标记数据的混合学习,该数据由于缺乏足够量的标记数据而导致的监督学习者失败。因此,我们的半监督训练方法显着优于卷积神经网络(CNN)的监督培训,当标记的训练数据稀缺时。在精度,敏感性和特异性方面,我们的方法的95%置信区间分别为99.56±0.20%,99.88±0.24%和99.40±0.1.18%,而CNN的间隔(训练有素的监督)为68.34 + - 4.11%,91.2 + - 6.15%,46.40 + - 5.21%。
translated by 谷歌翻译
Even though active learning forms an important pillar of machine learning, deep learning tools are not prevalent within it. Deep learning poses several difficulties when used in an active learning setting. First, active learning (AL) methods generally rely on being able to learn and update models from small amounts of data. Recent advances in deep learning, on the other hand, are notorious for their dependence on large amounts of data. Second, many AL acquisition functions rely on model uncertainty, yet deep learning methods rarely represent such model uncertainty. In this paper we combine recent advances in Bayesian deep learning into the active learning framework in a practical way. We develop an active learning framework for high dimensional data, a task which has been extremely challenging so far, with very sparse existing literature. Taking advantage of specialised models such as Bayesian convolutional neural networks, we demonstrate our active learning techniques with image data, obtaining a significant improvement on existing active learning approaches. We demonstrate this on both the MNIST dataset, as well as for skin cancer diagnosis from lesion images (ISIC2016 task).
translated by 谷歌翻译
标记大量数据很昂贵。主动学习旨在通过要求注释未标记的集合中最有用的数据来解决这个问题。我们提出了一种新颖的活跃学习方法,该方法利用自我监督的借口任务和独特的数据采样器来选择既困难又具有代表性的数据。我们发现,简单的自我监督借口任务(例如旋转预测)的损失与下游任务损失密切相关。在主动学习迭代之前,对未标记的集合进行了借口任务学习者进行培训,并且未标记的数据被分类并通过其借口任务损失分组成批处理。在每个主动的学习迭代中,主要任务模型用于批评要注释的批次中最不确定的数据。我们评估了有关各种图像分类和分割基准测试的方法,并在CIFAR10,CALTECH-101,IMAGENET和CITYSCAPES上实现引人注目的性能。我们进一步表明,我们的方法在不平衡的数据集上表现良好,并且可以有效地解决冷启动问题的解决方案,在这种问题中,主动学习性能受到随机采样的初始标记集的影响。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
大型,注释的数据集在医学图像分析中不广泛使用,这是由于时间,成本和标记大型数据集相关的挑战。未标记的数据集更容易获取,在许多情况下,专家可以为一小部分图像提供标签是可行的。这项工作提出了一个信息理论的主动学习框架,该框架可以根据评估数据集中最大化预期信息增益(EIG)来指导未标记池的最佳图像选择。实验是在两个不同的医学图像分类数据集上进行的:多类糖尿病性视网膜病变量表分类和多级皮肤病变分类。结果表明,通过调整EIG来说明班级不平衡,我们提出的适应预期信息增益(AEIG)的表现优于几个流行的基线,包括基于多样性的核心和基于不确定性的最大熵抽样。具体而言,AEIG仅占总体表现的95%,只有19%的培训数据,而其他活跃的学习方法则需要约25%。我们表明,通过仔细的设计选择,我们的模型可以集成到现有的深度学习分类器中。
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
通过医学成像检测疾病是由于其非侵入性的。医学成像支持多种数据模式,可以在人体内部进行彻底快速的外观。但是,解释成像数据通常是耗时的,需要大量的人类专业知识。深度学习模型可以加快解释并减轻人类专家的工作。但是,这些模型是数据密集型的,需要大量标记的图像进行培训。在新型疾病暴发(例如Covid-19)中,我们通常没有所需的标记成像数据,尤其是在流行病开始时。深度转移学习通过在公共领域中使用验证的模型来解决此问题,例如任何VGGNET,RESNET,INCEPTION,DENSENET等的变体都是功能学习者,以快速从较少的样本中适应目标任务。大多数审慎的模型都是深层建筑的深度。他们接受了大型多级数据集(例如ImageNet)的培训,并在建筑设计和超级参数调整方面进行了重大努力。我们提出了1个更简单的生成源模型,在单个但相关的概念上预估计,可以与现有较大的预审预周化模型一样有效。我们证明了生成转移学习的有用性,该学习需要较少的计算和培训数据,对于少数射击学习(FSL),使用COVID-19-19,二进制分类用例。我们将经典的深度转移学习与我们的方法进行了比较,还报告了FSL结果,三个设置为84、20和10个培训样本。用于COVID-19分类的生成FSL的模型实现可在https://github.com/suvarnak/generativefslcovid.git上公开获得。
translated by 谷歌翻译
大型标记数据集的可用性是深度学习成功的关键组成部分。但是,大型数据集上的标签通常很耗时且昂贵。主动学习是一个研究领域,通过选择最重要的标签样本来解决昂贵的标签问题。基于多样性的采样算法被称为基于表示的主动学习方法的组成部分。在本文中,我们介绍了一种新的基于多样性的初始数据集选择算法,以选择有效学习环境中初始标记的最有用的样本集。自我监督的表示学习用于考虑初始数据集选择算法中样品的多样性。此外,我们提出了一种新型的主动学习查询策略,该策略使用基于多样性的基于一致性的嵌入方式采样。通过考虑基于一致性的嵌入方案中多样性的一致性信息,该方法可以在半监督的学习环境中选择更多信息的样本来标记。比较实验表明,通过利用未标记的数据的多样性,与先前的主动学习方法相比,该提出的方法在CIFAR-10和CALTECH-101数据集上取得了令人信服的结果。
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
While deep learning succeeds in a wide range of tasks, it highly depends on the massive collection of annotated data which is expensive and time-consuming. To lower the cost of data annotation, active learning has been proposed to interactively query an oracle to annotate a small proportion of informative samples in an unlabeled dataset. Inspired by the fact that the samples with higher loss are usually more informative to the model than the samples with lower loss, in this paper we present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss. The core of our approach is a measurement Temporal Output Discrepancy (TOD) that estimates the sample loss by evaluating the discrepancy of outputs given by models at different optimization steps. Our theoretical investigation shows that TOD lower-bounds the accumulated sample loss thus it can be used to select informative unlabeled samples. On basis of TOD, we further develop an effective unlabeled data sampling strategy as well as an unsupervised learning criterion for active learning. Due to the simplicity of TOD, our methods are efficient, flexible, and task-agnostic. Extensive experimental results demonstrate that our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks. In addition, we show that TOD can be utilized to select the best model of potentially the highest testing accuracy from a pool of candidate models.
translated by 谷歌翻译
半监督学习(SSL)是一个有效的框架,可以使用标记和未标记的数据训练模型,但是当缺乏足够的标记样品时,可能会产生模棱两可和不可区分的表示。有了人类的循环学习,积极的学习可以迭代地选择无标记的样品进行标签和培训,以提高SSL框架的性能。但是,大多数现有的活跃学习方法都取决于预先训练的功能,这不适合端到端学习。为了解决SSL的缺点,在本文中,我们提出了一种新颖的端到端表示方法,即ActiveMatch,它将SSL与对比度学习和积极学习结合在一起,以充分利用有限的标签。从少量的标记数据开始,无监督的对比度学习作为热身学习,然后将ActiveMatch结合在一起,将SSL和监督对比度学习结合在一起,并积极选择在培训期间标记的最具代表性的样本,从而更好地表示分类。与MixMatch和FixMatch具有相同数量的标记数据相比,我们表明ActiveMatch实现了最先进的性能,CIFAR-10的精度为89.24%,具有100个收集的标签,而92.20%的精度为92.20%,有200个收集的标签。
translated by 谷歌翻译
主动学习(AL)算法旨在识别注释的最佳数据子集,使得深神经网络(DNN)在此标记子集上培训时可以实现更好的性能。 AL特别有影响的工业规模设置,其中数据标签成本高,从业者使用各种工具来处理,以提高模型性能。最近自我监督预测(SSP)的成功突出了利用丰富的未标记数据促进模型性能的重要性。通过将AL与SSP结合起来,我们可以使用未标记的数据,同时标记和培训特别是信息样本。在这项工作中,我们研究了Imagenet上的AL和SSP的组合。我们发现小型玩具数据集上的性能 - 文献中的典型基准设置 - 由于活动学习者选择的类不平衡样本,而不是想象中的性能。在我们测试的现有基线中,各种小型和大规​​模设置的流行AL算法未能以随机抽样优于差异。为了解决类别不平衡问题,我们提出了平衡选择(基础),这是一种简单,可伸缩的AL算法,通过选择比现有方法更加平衡样本来始终如一地始终采样。我们的代码可用于:https://github.com/zeyademam/active_learning。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
Acquiring labeled data is challenging in many machine learning applications with limited budgets. Active learning gives a procedure to select the most informative data points and improve data efficiency by reducing the cost of labeling. The info-max learning principle maximizing mutual information such as BALD has been successful and widely adapted in various active learning applications. However, this pool-based specific objective inherently introduces a redundant selection and further requires a high computational cost for batch selection. In this paper, we design and propose a new uncertainty measure, Balanced Entropy Acquisition (BalEntAcq), which captures the information balance between the uncertainty of underlying softmax probability and the label variable. To do this, we approximate each marginal distribution by Beta distribution. Beta approximation enables us to formulate BalEntAcq as a ratio between an augmented entropy and the marginalized joint entropy. The closed-form expression of BalEntAcq facilitates parallelization by estimating two parameters in each marginal Beta distribution. BalEntAcq is a purely standalone measure without requiring any relational computations with other data points. Nevertheless, BalEntAcq captures a well-diversified selection near the decision boundary with a margin, unlike other existing uncertainty measures such as BALD, Entropy, or Mean Standard Deviation (MeanSD). Finally, we demonstrate that our balanced entropy learning principle with BalEntAcq consistently outperforms well-known linearly scalable active learning methods, including a recently proposed PowerBALD, a simple but diversified version of BALD, by showing experimental results obtained from MNIST, CIFAR-100, SVHN, and TinyImageNet datasets.
translated by 谷歌翻译
主动学习通过从未标记的数据集中标记有信息的样本来有效地构建标记的数据集。在现实世界中的活跃学习方案中,考虑到所选样本的多样性至关重要,因为存在许多冗余或高度相似的样本。核心设定方法是基于多样性的有希望的方法,根据样品之间的距离选择不同的样品。然而,与选择最困难的样本的基于不确定性的方法相比,该方法的性能差,神经模型表现出低置信度。在这项工作中,我们通过密度的晶状体分析特征空间,有趣的是,观察到局部稀疏区域往往比密集区域具有更多信息样本。通过我们的分析,我们将核心设定方法赋予密度意识,并提出密度感知的核心集(DACS)。该策略是估计未标记样品的密度,并主要从稀疏区域选择不同的样品。为了减少估计密度的计算瓶颈,我们还基于对区域敏感的散列引入了新的密度近似。实验结果清楚地表明了DAC在分类和回归任务中的功效,并特别表明DAC可以在实际情况下产生最先进的性能。由于DACS微弱地取决于神经体系结构,因此我们提出了一种简单而有效的组合方法,以表明现有方法可以与DAC合并。
translated by 谷歌翻译