本文提出了一种新的高维金融数据算法 - 该群体可解释基础选择(GIB)算法,以估计最近开发的广义套利定价理论暗示的新的自适应多因素(AMF)资产定价模型,它放松了风险因素的数量小的惯例。我们首先使用高维方法获得基础资产的自适应基础资产集合,然后同时测试该基础资产对应哪种证券。AMF模型以及GIBS算法显示出比FAMA-French 5因素模型具有明显更好的拟合和预测能力。
translated by 谷歌翻译
在本文中,我们考虑了使用相同的预测精度测试程序在横截面依赖下实现了实现波动率测量的预测评估。在预测实现挥发性时,我们根据增强横截面评估模型的预测精度。在相等预测精度的零假设下,所采用的基准模型是标准的HAR模型,而在非相同的预测精度的替代方案下,预测模型是通过套索缩收估计的增强的HAR模型。我们通过结合测量误差校正以及横截面跳转分量测量来研究预报对模型规范的敏感性。使用数值实现评估模型的样本外预测评估。
translated by 谷歌翻译
我们使用深层部分最小二乘(DPL)来估算单个股票收益的资产定价模型,该模型以灵活而动态的方式利用调理信息,同时将超额回报归因于一小部分统计风险因素。新颖的贡献是解决非线性因子结构,从而推进经验资产定价中深度学习的当前范式,该定价在假设高斯资产回报和因素的假设下使用线性随机折现因子。通过使用预测的最小二乘正方形来共同投影公司特征和资产回报到潜在因素的子空间,并使用深度学习从因子负载到资产回报中学习非线性图。捕获这种非线性风险因素结构的结果是通过线性风险因素暴露和相互作用效应来表征资产回报中的异常情况。因此,深度学习捕获异常值的众所周知的能力,在潜在因素结构中的角色和高阶项在因素风险溢价上的作用。从经验方面来说,我们实施了DPLS因子模型,并表现出比Lasso和Plain Vanilla深度学习模型表现出卓越的性能。此外,由于DPL的更简约的架构,我们的网络培训时间大大减少了。具体而言,在1989年12月至2018年1月的一段时间内使用Russell 1000指数中的3290资产,我们评估了我们的DPLS因子模型,并生成比深度学习大约1.2倍的信息比率。 DPLS解释了变化和定价错误,并确定了最突出的潜在因素和公司特征。
translated by 谷歌翻译
我们通过随时间变化的因素负载开发了受惩罚的两次通用回归。第一遍中的惩罚对时间变化驱动因素强加了稀疏性,同时还通过正规化适当的系数组来维持与无契约限制的兼容性。第二次通过提供了风险溢价估计,以预测股权超额回报。我们的蒙特卡洛结果以及我们对大量横断面数据集的个人股票集的经验结果表明,如果不进行分组的惩罚可能会屈服于几乎所有估计的时变模型,违反了无标准限制。此外,我们的结果表明,与惩罚方法相比,所提出的方法在没有适当分组或时间不变的因子模型的情况下减少了预测错误。
translated by 谷歌翻译
本文建立了市场微观结构特征措施的聚类模型,这些功能在预测股票回报中很受欢迎。在10秒的时间频率中,我们研究了不同措施的聚类结构,以找出最佳预测的措施。以这种方式,我们可以用有限数量的预测器来预测更准确的预测器,其消除噪声并使模型更加解释。
translated by 谷歌翻译
Latent factor model estimation typically relies on either using domain knowledge to manually pick several observed covariates as factor proxies, or purely conducting multivariate analysis such as principal component analysis. However, the former approach may suffer from the bias while the latter can not incorporate additional information. We propose to bridge these two approaches while allowing the number of factor proxies to diverge, and hence make the latent factor model estimation robust, flexible, and statistically more accurate. As a bonus, the number of factors is also allowed to grow. At the heart of our method is a penalized reduced rank regression to combine information. To further deal with heavy-tailed data, a computationally attractive penalized robust reduced rank regression method is proposed. We establish faster rates of convergence compared with the benchmark. Extensive simulations and real examples are used to illustrate the advantages.
translated by 谷歌翻译
本文提出了一种基于图形的正则化回归估计器 - 分层特征回归(HFR) - 从机器学习和图论域名的洞察力调动洞察力,以估算线性回归的鲁棒参数。估计器构造一个监督的特征图,该监督特征图沿其边缘分解参数,首先调整常见变化并连续地将特殊性模式结合到拟合过程中。图形结构具有对组靶标的参数收缩的影响,其中收缩程度由肝异常的控制,并且基团组合物以及收缩靶数是内源性的。该方法提供了丰富的资源,以便在数据中的潜在效果结构的视觉探索,并与一系列经验和模拟回归任务的常用正则化技术面板相比,展示了良好的预测精度和多功能性。
translated by 谷歌翻译
我们提出了一个程序,该程序将层次聚类与从一组大型IV中选择有效仪器变量(IV)的限制的测试结合在一起。其中一些可能是无效的,因为它们未通过排除限制。我们表明,如果最大的IV组有效,我们的方法就可以实现Oracle属性。与现有技术不同,我们的工作涉及多个内源回归器,较弱的仪器,异质效应和几乎有效性。在模拟中,我们的过程优于硬阈值和置信区间方法。该方法适用于估计移民对工资和教育回报的影响。
translated by 谷歌翻译
我们讨论了具有未知IV有效性的线性仪器变量(IV)模型中识别的基本问题。我们重新审视了流行的多数和多元化规则,并表明通常没有识别条件是“且仅在总体上”。假设“最稀少的规则”,该规则等同于多数规则,但在计算算法中变得运作,我们研究并证明了基于两步选择的其他IV估计器的非convex惩罚方法的优势,就两步选择而言选择一致性和单独弱IV的适应性。此外,我们提出了一种与识别条件保持一致的替代较低的惩罚,并同时提供甲骨文稀疏结构。与先前的文献相比,针对静脉强度较弱的估计仪得出了理想的理论特性。使用模拟证明了有限样本特性,并且选择和估计方法应用于有关贸易对经济增长的影响的经验研究。
translated by 谷歌翻译
We study a multi-factor block model for variable clustering and connect it to the regularized subspace clustering by formulating a distributionally robust version of the nodewise regression. To solve the latter problem, we derive a convex relaxation, provide guidance on selecting the size of the robust region, and hence the regularization weighting parameter, based on the data, and propose an ADMM algorithm for implementation. We validate our method in an extensive simulation study. Finally, we propose and apply a variant of our method to stock return data, obtain interpretable clusters that facilitate portfolio selection and compare its out-of-sample performance with other clustering methods in an empirical study.
translated by 谷歌翻译
不同的代理需要进行预测。他们观察到相同的数据,但有不同的模型:他们预测使用不同的解释变量。我们研究哪个代理商认为它们具有最佳的预测能力 - 通过最小的主观后均匀平均平方预测误差来衡量 - 并且显示它如何取决于样本大小。使用小样品,我们呈现结果表明它是使用低维模型的代理。对于大型样品,通常是具有高维模型的代理,可能包括无关的变量,但从未排除相关的变量。我们将结果应用于拍卖生产资产拍卖中的获胜模型,以争辩于企业家和具有简单模型的投资者将在新部门过度代表,并了解解释横断面变异的“因素”的扩散资产定价文学中的预期股票回报。
translated by 谷歌翻译
稳定性选择(Meinshausen和Buhlmann,2010)通过返回许多副页面一致选择的功能来使任何特征选择方法更稳定。我们证明(在我们的知识中,它的知识,它的第一个结果),对于包含重要潜在变量的高度相关代理的数据,套索通常选择一个代理,但与套索的稳定性选择不能选择任何代理,导致比单独的套索更糟糕的预测性能。我们介绍集群稳定性选择,这利用了从业者的知识,即数据中存在高度相关的集群,从而产生比此设置中的稳定性选择更好的特征排名。我们考虑了几种特征组合方法,包括在每个重要集群中占据各个重要集群中的特征的加权平均值,其中重量由选择集群成员的频率决定,我们显示的是比以前的提案更好地导致更好的预测模型。我们呈现来自Meinshausen和Buhlmann(2010)和Shah和Samworth(2012)的理论担保的概括,以表明集群稳定选择保留相同的保证。总之,集群稳定性选择享有两个世界的最佳选择,产生既稳定的稀疏选择集,具有良好的预测性能。
translated by 谷歌翻译
假设我们观察一个随机向量$ x $从一个具有未知参数的已知家庭中的一些分发$ p $。我们问以下问题:什么时候可以将$ x $分为两部分$ f(x)$和$ g(x)$,使得两部分都足以重建$ x $自行,但两者都可以恢复$ x $完全,$(f(x),g(x))$的联合分布是贸易的吗?作为一个例子,如果$ x =(x_1,\ dots,x_n)$和$ p $是一个产品分布,那么对于任何$ m <n $,我们可以将样本拆分以定义$ f(x)=(x_1 ,\ dots,x_m)$和$ g(x)=(x_ {m + 1},\ dots,x_n)$。 Rasines和Young(2021)提供了通过使用$ x $的随机化实现此任务的替代路线,并通过加性高斯噪声来实现高斯分布数据的有限样本中的选择后推断和非高斯添加剂模型的渐近。在本文中,我们提供更一般的方法,可以通过借助贝叶斯推断的思路在有限样本中实现这种分裂,以产生(频繁的)解决方案,该解决方案可以被视为数据分裂的连续模拟。我们称我们的方法数据模糊,作为数据分割,数据雕刻和P值屏蔽的替代方案。我们举例说明了一些原型应用程序的方法,例如选择趋势过滤和其他回归问题的选择后推断。
translated by 谷歌翻译
统计推断中的主要范式取决于I.I.D.的结构。来自假设的无限人群的数据。尽管它取得了成功,但在复杂的数据结构下,即使在清楚无限人口所代表的内容的情况下,该框架在复杂的数据结构下仍然不灵活。在本文中,我们探讨了一个替代框架,在该框架中,推断只是对模型误差的不变性假设,例如交换性或符号对称性。作为解决这个不变推理问题的一般方法,我们提出了一个基于随机的过程。我们证明了该过程的渐近有效性的一般条件,并在许多数据结构中说明了,包括单向和双向布局中的群集误差。我们发现,通过残差随机化的不变推断具有三个吸引人的属性:(1)在弱且可解释的条件下是有效的,可以解决重型数据,有限聚类甚至一些高维设置的问题。 (2)它在有限样品中是可靠的,因为它不依赖经典渐近学所需的规律性条件。 (3)它以适应数据结构的统一方式解决了推断问题。另一方面,诸如OLS或Bootstrap之类的经典程序以I.I.D.为前提。结构,只要实际问题结构不同,就需要修改。经典框架中的这种不匹配导致了多种可靠的误差技术和自举变体,这些变体经常混淆应用研究。我们通过广泛的经验评估证实了这些发现。残留随机化对许多替代方案的表现有利,包括可靠的误差方法,自举变体和分层模型。
translated by 谷歌翻译
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this paper is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
We introduce an ensemble learning method based on Gaussian Process Regression (GPR) for predicting conditional expected stock returns given stock-level and macro-economic information. Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference and lends itself to general online learning tasks. We conduct an empirical analysis on a large cross-section of US stocks from 1962 to 2016. We find that our method dominates existing machine learning models statistically and economically in terms of out-of-sample $R$-squared and Sharpe ratio of prediction-sorted portfolios. Exploiting the Bayesian nature of GPR, we introduce the mean-variance optimal portfolio with respect to the predictive uncertainty distribution of the expected stock returns. It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
translated by 谷歌翻译
我们提出了一种估计具有标称分类数据的高维线性模型的方法。我们的估算器,称为范围,通过使其相应的系数完全相等来融合水平。这是通过对分类变量的系数的阶数统计之间的差异之间的差异来实现这一点,从而聚类系数。我们提供了一种算法,用于精确和有效地计算在具有潜在许多级别的单个变量的情况下的总体上的最小值的全局最小值,并且在多变量情况下在块坐标血管下降过程中使用它。我们表明,利用未知级别融合的Oracle最小二乘解决方案是具有高概率的坐标血缘的极限点,只要真正的级别具有一定的最小分离;已知这些条件在单变量案例中最小。我们展示了在一系列实际和模拟数据集中的范围的有利性能。 R包的R包Catreg实现线性模型的范围,也可以在CRAN上提供逻辑回归的版本。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译