许多参与者批评深度强化学习(DRL)算法在解决各种具有挑战性的强化学习(RL)问题方面已经取得了尖端的表现,包括具有高维连续状态和动作空间的复杂控制任务。尽管有广泛报道的成功,但现有的DRL算法经常遭受无效的勘探问题的困扰,从而导致学习稳定性和表现有限。为了解决这一限制,最近提出了几种集成DRL算法,以增强探索和稳定学习过程。但是,许多现有的合奏算法旨在单独训练每个基础学习者,而无需明确控制训练有素的基础学习者之间的协作。在本文中,我们提出了一种新技术,以基于多步集成方法来培训基础学习者的合奏。新的多步培训技术使我们能够为集合DRL开发一种新的层次结构培训算法,该算法通过显式的Inter-Learner参数共享来促进学习中的协作。理论上对我们的新算法的设计进行了验证。该算法在经验上也显示出在多个基准RL问题上的表现优于几种尖端的DRL算法。
translated by 谷歌翻译
最近已结合了进化算法(EAS)和深度加强学习(DRL)以集成两个解决方案的优势以获得更好的政策学习。然而,在现有的混合方法中,EA用于直接培训策略网络,这将导致对政策绩效的样本效率和不可预测的影响。为了更好地整合这两种方法并避免引入EA引起的缺点,我们致力于设计更有效和合理的结合EA和DRL的方法。在本文中,我们提出了进化行动选择 - 双胞胎延迟深度确定性政策梯度(EAS-TD3),是EA和DRL的新组合。在EAS中,我们专注于优化策略网络选择的动作,并尝试通过进化算法来指导策略学习的高质量行动。我们对挑战的连续控制任务进行了几个实验。结果表明,EAS-TD3在其他最先进的方法中显示出优异的性能。
translated by 谷歌翻译
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
无模型的深度增强学习(RL)已成功应用于挑战连续控制域。然而,较差的样品效率可防止这些方法广泛用于现实世界领域。我们通过提出一种新的无模型算法,现实演员 - 评论家(RAC)来解决这个问题,旨在通过学习关于Q函数的各种信任的政策家庭来解决价值低估和高估之间的权衡。我们构建不确定性惩罚Q-Learning(UPQ),该Q-Learning(UPQ)使用多个批评者的合并来控制Q函数的估计偏差,使Q函数平稳地从低于更高的置信范围偏移。随着这些批评者的指导,RAC采用通用价值函数近似器(UVFA),同时使用相同的神经网络学习许多乐观和悲观的政策。乐观的政策会产生有效的探索行为,而悲观政策会降低价值高估的风险,以确保稳定的策略更新和Q函数。该方法可以包含任何违规的演员 - 评论家RL算法。我们的方法实现了10倍的样本效率和25 \%的性能改进与SAC在最具挑战性的人形环境中,获得了11107美元的集中奖励1107美元,价格为10 ^ 6美元。所有源代码都可以在https://github.com/ihuhuhu/rac获得。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
采用合理的策略是具有挑战性的,但对于智能代理商的智能代理人至关重要,其资源有限,在危险,非结构化和动态环境中工作,以改善系统实用性,降低整体成本并增加任务成功概率。深度强化学习(DRL)帮助组织代理的行为和基于其状态的行为,并代表复杂的策略(行动的组成)。本文提出了一种基于贝叶斯链条的新型分层策略分解方法,将复杂的政策分为几个简单的子手段,并将其作为贝叶斯战略网络(BSN)组织。我们将这种方法整合到最先进的DRL方法中,软演奏者 - 批评者(SAC),并通过组织几个子主管作为联合政策来构建相应的贝叶斯软演奏者(BSAC)模型。我们将建议的BSAC方法与标准连续控制基准(Hopper-V2,Walker2D-V2和Humanoid-V2)在SAC和其他最先进的方法(例如TD3,DDPG和PPO)中进行比较 - Mujoco与Openai健身房环境。结果表明,BSAC方法的有希望的潜力可显着提高训练效率。可以从https://github.com/herolab-uga/bsac访问BSAC的开源代码。
translated by 谷歌翻译
在高维连续任务中学习的学习是具有挑战性的,主要是当体验重播记忆非常有限时。我们引入了一种简单而有效的经验共享机制,用于在未来的非政策深度强化学习应用程序中进行连续动作域中的确定性政策,其中分配的经验重播缓冲液的分配记忆受到限制。为了克服通过从其他代理商的经验中学习引起的外推误差,我们通过一种新型的非政策校正技术促进了我们的算法,而没有任何动作概率估计。我们测试方法在挑战OpenAi Gym连续控制任务方面的有效性,并得出结论,它可以在多个代理商之间获得安全的体验,并在重播记忆受到严格限制时表现出强大的性能。
translated by 谷歌翻译
在无模型的深度加强学习(RL)算法中,利用嘈杂的值估计监督政策评估和优化对样品效率有害。由于这种噪声是异源的,因此可以在优化过程中使用基于不确定性的权重来缓解其效果。以前的方法依赖于采样的合奏,这不会捕获不确定性的所有方面。我们对在RL的嘈杂监管中提供了对不确定性的不确定性来源的系统分析,并引入了诸如将概率集合和批处理逆差加权组合的贝叶斯框架的逆差异RL。我们提出了一种方法,其中两个互补的不确定性估计方法占Q值和环境随机性,以更好地减轻嘈杂监督的负面影响。我们的结果表明,对离散和连续控制任务的采样效率方面显着改进。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
最近基于进化的零级优化方法和基于策略梯度的一阶方法是解决加强学习(RL)问题的两个有希望的替代方案。前者的方法与任意政策一起工作,依赖状态依赖和时间扩展的探索,具有健壮性的属性,但遭受了较高的样本复杂性,而后者的方法更有效,但仅限于可区分的政策,并且学习的政策是不太强大。为了解决这些问题,我们提出了一种新颖的零级演员 - 批评算法(ZOAC),该算法将这两种方法统一为派对演员 - 批判性结构,以保留两者的优势。 ZOAC在参数空间,一阶策略评估(PEV)和零订单策略改进(PIM)的参数空间中进行了推出集合,每次迭代中都会进行推出。我们使用不同类型的策略在广泛的挑战连续控制基准上进行广泛评估我们的方法,其中ZOAC优于零阶和一阶基线算法。
translated by 谷歌翻译
不确定性量化是现实世界应用中机器学习的主要挑战之一。在强化学习中,一个代理人面对两种不确定性,称为认识论不确定性和态度不确定性。同时解开和评估这些不确定性,有机会提高代理商的最终表现,加速培训并促进部署后的质量保证。在这项工作中,我们为连续控制任务的不确定性感知强化学习算法扩展了深层确定性策略梯度算法(DDPG)。它利用了认识论的不确定性,以加快探索和不确定性来学习风险敏感的政策。我们进行数值实验,表明我们的DDPG变体在机器人控制和功率网络优化方面的基准任务中均优于香草DDPG而没有不确定性估计。
translated by 谷歌翻译
在训练加强学习(RL)代理的过程中,随着代理商的行为随着时间的变化而变化,培训数据的分布是非平稳的。因此,有风险,代理被过度专门针对特定的分布,其性能在更大的情况下受到了影响。合奏RL可以通过学习强大的策略来减轻此问题。但是,由于新引入的价值和策略功能,它遭受了大量的计算资源消耗。在本文中,为了避免臭名昭著的资源消费问题,我们设计了一个新颖而简单的合奏深度RL框架,将多个模型集成到单个模型中。具体而言,我们提出了\下划线{m} inimalist \ usewissline {e} nsemble \ useverlline {p} olicy \ usewissline {g} radient框架(mepg),通过利用修改后的辍学者,引入了简约的bellman更新。 MEPG通过保持Bellman方程式两侧的辍学一致性来持有合奏属性。此外,辍学操作员还增加了MEPG的概括能力。此外,我们从理论上表明,MEPG中的政策评估阶段维持了两个同步的深高斯流程。为了验证MEPG框架的概括能力,我们在健身房模拟器上执行实验,该实验表明,MEPG框架的表现优于或达到与当前最新的无效合奏方法和不增加模型的方法相似的性能水平其他计算资源成本。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
在许多增强学习(RL)应用中,观察空间由人类开发人员指定并受到物理实现的限制,因此可能会随时间的巨大变化(例如,观察特征的数量增加)。然而,当观察空间发生变化时,前一项策略可能由于输入特征不匹配而失败,并且另一个策略必须从头开始培训,这在计算和采样复杂性方面效率低。在理论上见解之后,我们提出了一种新颖的算法,该算法提取源任务中的潜在空间动态,并将动态模型传送到目标任务用作基于模型的常规程序。我们的算法适用于观察空间的彻底变化(例如,从向量的基于矢量的观察到图像的观察),没有任何任务映射或目标任务的任何先前知识。实证结果表明,我们的算法显着提高了目标任务中学习的效率和稳定性。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
深层确定性的非政策算法的类别有效地用于解决具有挑战性的连续控制问题。但是,当前的方法使用随机噪声作为一种常见的探索方法,该方法具有多个弱点,例如需要对给定任务进行手动调整以及在训练过程中没有探索性校准。我们通过提出一种新颖的指导探索方法来应对这些挑战,该方法使用差异方向控制器来结合可扩展的探索性动作校正。提供探索性方向的蒙特卡洛评论家合奏作为控制器。提出的方法通过动态改变勘探来改善传统探索方案。然后,我们提出了一种新颖的算法,利用拟议的定向控制器进行政策和评论家修改。所提出的算法在DMControl Suite的各种问题上都优于现代增强算法的现代增强算法。
translated by 谷歌翻译
深度加强学习(RL)的增长为该领域带来了多种令人兴奋的工具和方法。这种快速扩展使得了解RL工具箱的各个元素之间的相互作用。通过在连续控制环境中进行研究,我们从实证角度接近这项任务。我们提出了对基本性质的多个见解,包括:从相同数据培训的多个演员的平均值提升了性能;现有方法在培训运行,培训时期,培训时期和评估运行不稳定;有效培训不需要常用的添加剂动作噪声;基于后抽样的策略探讨比近似的UCB与加权Bellman备份相结合的探讨;单独加权的Bellman备份不能取代剪辑的双Q学习;批评者的初始化在基于集合的演员批评探索中起着重要作用。作为一个结论,我们展示了现有的工具如何以新颖的方式汇集,产生集合深度确定性政策梯度(ED2)方法,从Openai Gyem Mujoco的连续控制任务产生最先进的结果。从实际方面,ED2在概念上简单,易于编码,并且不需要在现有RL工具箱之外的知识。
translated by 谷歌翻译
In the field of reinforcement learning, because of the high cost and risk of policy training in the real world, policies are trained in a simulation environment and transferred to the corresponding real-world environment. However, the simulation environment does not perfectly mimic the real-world environment, lead to model misspecification. Multiple studies report significant deterioration of policy performance in a real-world environment. In this study, we focus on scenarios involving a simulation environment with uncertainty parameters and the set of their possible values, called the uncertainty parameter set. The aim is to optimize the worst-case performance on the uncertainty parameter set to guarantee the performance in the corresponding real-world environment. To obtain a policy for the optimization, we propose an off-policy actor-critic approach called the Max-Min Twin Delayed Deep Deterministic Policy Gradient algorithm (M2TD3), which solves a max-min optimization problem using a simultaneous gradient ascent descent approach. Experiments in multi-joint dynamics with contact (MuJoCo) environments show that the proposed method exhibited a worst-case performance superior to several baseline approaches.
translated by 谷歌翻译
为了在许多因素动态影响输出轨迹的复杂随机系统上学习,希望有效利用从以前迭代中收集的历史样本中的信息来加速策略优化。经典的经验重播使代理商可以通过重复使用历史观察来记住。但是,处理所有观察结果的统一重复使用策略均忽略了不同样本的相对重要性。为了克服这一限制,我们提出了一个基于一般差异的经验重播(VRER)框架,该框架可以选择性地重复使用最相关的样本以改善策略梯度估计。这种选择性机制可以自适应地对过去的样品增加重量,这些样本更可能由当前目标分布产生。我们的理论和实证研究表明,提议的VRER可以加速学习最佳政策,并增强最先进的政策优化方法的性能。
translated by 谷歌翻译
为了在许多因素动态影响输出轨迹的复杂随机系统上学习,希望有效利用从以前迭代中收集的历史样本中的信息来加速策略优化。经典的经验重播使代理商可以通过重复使用历史观察来记住。但是,处理所有观察结果的统一重复使用策略均忽略了不同样本的相对重要性。为了克服这一限制,我们提出了一个基于一般差异的经验重播(VRER)框架,该框架可以选择性地重复使用最相关的样本以改善策略梯度估计。这种选择性机制可以自适应地对过去的样品增加重量,这些样本更可能由当前目标分布产生。我们的理论和实证研究表明,提议的VRER可以加速学习最佳政策,并增强最先进的政策优化方法的性能。
translated by 谷歌翻译