在本文中,我们提出了一种对无监督域适应的新方法,与最佳运输,学习概率措施和无监督学习的概念相关。所提出的方法Hot-DA基于最佳运输的分层制定,其利用了由地面度量捕获的几何信息,源和目标域中的结构信息更丰富的结构信息。通过根据其类标签将样本分组到结构中,本质地形成标记的源域中的附加信息。在探索未标记的目标域中的隐藏结构的同时,通过Wassersein BaryCenter的学习概率措施的问题,我们证明是等同于光谱聚类。具有可控复杂性的玩具数据集的实验和两个具有挑战性的视觉适应数据集显示了所提出的方法的优越性。
translated by 谷歌翻译
在计算机视觉中,面对域转移是很常见的:具有相同类但采集条件不同的图像。在域适应性(DA)中,人们希望使用源标记的图像对未标记的目标图像进行分类。不幸的是,在源训练集中训练的深度神经网络在不属于训练领域的目标图像上表现不佳。改善这些性能的一种策略是使用最佳传输(OT)在嵌入式空间中对齐源和目标图像分布。但是,OT会导致负转移,即与不同标签的样品对齐,这导致过度拟合,尤其是在域之间存在标签移动的情况下。在这项工作中,我们通过将其解释为针对目标图像的嘈杂标签分配来减轻负相位。然后,我们通过适当的正则化来减轻其效果。我们建议将混合正则化\ citep {zhang2018mixup}与噪音标签强大的损失,以提高域的适应性性能。我们在一项广泛的消融研究中表明,这两种技术的结合对于提高性能至关重要。最后,我们在几个基准和现实世界DA问题上评估了称为\ textsc {mixunbot}的方法。
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
域的适应性旨在将从源域获得的标记实例转移到目标域,以填补域之间的空白。大多数域适应方法都假定源和目标域具有相同的维度。当每个域中的特征数量不同时,都很少研究当适用的方法,尤其是当未给出从目标域获得的测试数据的标签信息时。在本文中,假定在两个域中都存在共同特征,并且在目标域中观察到额外的(新的)特征。因此,目标域的维度高于源域的维度。为了利用共同特征的均匀性,这些源和目标域之间的适应性被称为最佳运输(OT)问题。此外,得出了基于ot的方法的目标域中的学习结合。使用模拟和现实世界数据对所提出的算法进行验证。
translated by 谷歌翻译
Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, domain adaptation frameworks usually include a domain invariant representation learning approach to measure and reduce the domain discrepancy, as well as a discriminator for classification. Inspired by Wasserstein GAN, in this paper we propose a novel approach to learn domain invariant feature representations, namely Wasserstein Distance Guided Representation Learning (WD-GRL). WDGRL utilizes a neural network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein distance in an adversarial manner. The theoretical advantages of Wasserstein distance for domain adaptation lie in its gradient property and promising generalization bound. Empirical studies on common sentiment and image classification adaptation datasets demonstrate that our proposed WDGRL outperforms the state-of-the-art domain invariant representation learning approaches.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
在各种机器学习问题中,包括转移,多任务,连续和元学习在内,衡量不同任务之间的相似性至关重要。最新的测量任务相似性的方法依赖于体系结构:1)依靠预训练的模型,或2)在任务上进行培训网络,并将正向转移用作任务相似性的代理。在本文中,我们利用了最佳运输理论,并定义了一个新颖的任务嵌入监督分类,该分类是模型的,无训练的,并且能够处理(部分)脱节标签集。简而言之,给定带有地面标签的数据集,我们通过多维缩放和串联数据集样品进行嵌入标签,并具有相应的标签嵌入。然后,我们将两个数据集之间的距离定义为其更新样品之间的2-Wasserstein距离。最后,我们利用2-wasserstein嵌入框架将任务嵌入到矢量空间中,在该空间中,嵌入点之间的欧几里得距离近似于任务之间提出的2-wasserstein距离。我们表明,与最佳传输数据集距离(OTDD)等相关方法相比,所提出的嵌入导致任务的比较显着更快。此外,我们通过各种数值实验证明了我们提出的嵌入的有效性,并显示了我们所提出的距离与任务之间的前进和向后转移之间的统计学意义相关性。
translated by 谷歌翻译
在本文中,我们解决了诱导的半监督学习问题,旨在获取样本数据的标签预测。所提出的方法称为最优传输诱导(OTI),有效地将最佳的传输基于传输的转换算法(OTP)扩展到二进制和多级设置的归纳任务。在多个数据集上进行一系列实验,以便将所提出的方法与最先进的方法进行比较。实验证明了我们方法的有效性。我们将我们的代码公开使用(代码可供选择:https://github.com/mouradelhamri/oti)。
translated by 谷歌翻译
无监督域适应(UDA)的绝大多数现有算法都集中在以一次性的方式直接从标记的源域调整到未标记的目标域。另一方面,逐渐的域适应性(GDA)假设桥接源和目标的$(t-1)$未标记的中间域,并旨在通过利用中间的路径在目标域中提供更好的概括。在某些假设下,Kumar等人。 (2020)提出了一种简单的算法,逐渐自我训练,以及按$ e^{o(t)} \ left的顺序结合的概括(\ varepsilon_0+o \ of \ left(\ sqrt {log(log(log(t)/n log(t)/n) } \ right)\ right)$对于目标域错误,其中$ \ varepsilon_0 $是源域错误,$ n $是每个域的数据大小。由于指数因素,当$ t $仅适中时,该上限变得空虚。在这项工作中,我们在更一般和放松的假设下分析了逐步的自我训练,并证明概括为$ \ varepsilon_0 + o \ left(t \ delta + t/\ sqrt {n} {n} \ right) + \ widetilde { o} \ left(1/\ sqrt {nt} \ right)$,其中$ \ delta $是连续域之间的平均分配距离。与对$ t $作为乘法因素的指数依赖性的现有界限相比,我们的界限仅取决于$ t $线性和添加性。也许更有趣的是,我们的结果意味着存在最佳的$ t $的最佳选择,从而最大程度地减少了概括性错误,并且自然也暗示了一种构造中间域路径的最佳方法,以最大程度地减少累积路径长度$ t \ delta源和目标之间的$。为了证实我们理论的含义,我们检查了对多个半合成和真实数据集的逐步自我训练,这证实了我们的发现。我们相信我们的见解为未来GDA算法设计的途径提供了前进的途径。
translated by 谷歌翻译
解决无监督域的适应性的主要方法是将源和目标域的数据点映射到嵌入式空间中,该空间被建模为共享深层编码器的输出空间。对编码器进行了训练,以使嵌入式空间域 - 敏捷剂,以使源训练的分类器可在目标域上推广。进一步提高UDA性能的次要机制是使源域分布更加紧凑,以提高模型的通用性。我们证明,增加嵌入空间中的阶级边缘可以帮助开发具有改善性能的UDA算法。我们估计源域的内部学习的多模式分布,该分布是由于预处理而学到的,并使用它来增加源域中的类间分离以减少域移位的效果。我们证明,使用我们的方法导致在四个标准基准UDA图像分类数据集上提高模型的通用性,并与退出方法进行了有利的比较。
translated by 谷歌翻译
域的概括旨在学习一个通用模型,该模型在看不见的目标域上表现良好,并结合了来自多个源域的知识。在这项研究中,我们考虑了以下场景,在不同类别跨领域的条件分布之间发生不同的领域变化。当源域中的标记样品受到限制时,现有方法不足以鲁棒。为了解决这个问题,我们提出了一个新型的域泛化框架,称为Wasserstein分布在鲁棒域的概括(WDRDG),灵感来自分布稳健优化的概念。我们鼓励对特定于类的Wasserstein不确定性集中有条件分布的鲁棒性,并优化分类器在这些不确定性集上的最差性能。我们进一步开发了一个测试时间适应模块,利用最佳运输来量化未见目标域和源域之间的关系,以使目标数据适应性推断。旋转MNIST,PACS和VLCS数据集的实验表明,我们的方法可以有效地平衡挑战性概括场景中的鲁棒性和可区分性。
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
In this work, we connect two distinct concepts for unsupervised domain adaptation: feature distribution alignment between domains by utilizing the task-specific decision boundary [58] and the Wasserstein metric [73]. Our proposed sliced Wasserstein discrepancy (SWD) is designed to capture the natural notion of dissimilarity between the outputs of task-specific classifiers. It provides a geometrically meaningful guidance to detect target samples that are far from the support of the source and enables efficient distribution alignment in an end-to-end trainable fashion. In the experiments, we validate the effectiveness and genericness of our method on digit and sign recognition, image classification, semantic segmentation, and object detection.
translated by 谷歌翻译
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
translated by 谷歌翻译
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled targetdomain data is necessary).As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation.Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-ofthe-art on Office datasets.
translated by 谷歌翻译
本文介绍了一个新颖而通用的框架,以利用最佳运输工具来解决监督标记的图形预测的旗舰任务。我们将问题提出为融合Gromov-Wasserstein(FGW)损失的回归,并提出了一个依靠FGW Barycenter的预测模型,该模型的权重取决于输入。首先,我们基于内核脊回归引入了一个非参数估计量,该估计量得到了理论结果,例如一致性和过量风险绑定。接下来,我们提出了一个可解释的参数模型,其中Barycenter权重用神经网络建模,并进一步学习了FGW Barycenter的图形。数值实验表明了该方法的强度及其在模拟数据上标记的图形空间以及难以实现的代谢识别问题上插值的能力,在这种情况下,它几乎没有工程学才能达到非常好的性能。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译