本文介绍了一种在同时定位和映射(SLAM)框架中进行可靠测量的方法。现有方法在成对的基础上检查一致性或兼容性,但是在成对场景中,许多测量类型都没有足够的约束,以确定是否与其他测量不一致。本文介绍了组-K $一致性最大化(G $ K $ cm),该估计最大的测量值是内部组的一致性。可以为最大的组$ k $一致测量的求解作为广义图上最大集团问题的实例,并可以通过调整电流方法来解决。本文使用模拟数据评估了G $ K $ CM的性能,并将其与以前工作中介绍的成对一致性最大化(PCM)进行比较。
translated by 谷歌翻译
姿势图优化是同时定位和映射问题的一种特殊情况,其中唯一要估计的变量是姿势变量,而唯一的测量值是施加间约束。绝大多数PGO技术都是基于顶点的(变量是机器人姿势),但是最近的工作以相对方式参数化了姿势图优化问题(变量是姿势之间的变换),利用最小循环基础来最大程度地提高范围的稀疏性。问题。我们以增量方式探索周期基础的构建,同时最大程度地提高稀疏性。我们验证一种算法,该算法逐渐构建稀疏循环基础,并将其性能与最小循环基础进行比较。此外,我们提出了一种算法,以近似两个图表的最小周期基础,这些图在多代理方案中常见。最后,姿势图优化的相对参数化仅限于使用SE(2)或SE(3)上的刚体变换作为姿势之间的约束。我们引入了一种方法,以允许在相对姿势图优化问题中使用低度测量值。我们对标准基准,模拟数据集和自定义硬件的算法进行了广泛的验证。
translated by 谷歌翻译
本文提出了Kimera-Multi,第一个多机器人系统,(i)是强大的,并且能够识别和拒绝由感知混叠产生的不正确和内部机器人循环闭合,(ii)完全分布,仅依赖于本地(点对点)通信实现分布式本地化和映射,(iii)实时构建环境的全球一致的度量标准三维网状模型,其中网格的面部用语义标签注释。 Kimera-Multi由配备有视觉惯性传感器的机器人团队实现。每个机器人都构建了局部轨迹估计和使用Kimera的本地网格。当通信可用时,机器人基于一种基于新型分布式刻度非凸性算法发起分布式地点识别和鲁棒姿态图优化协议。所提出的协议允许机器人通过利用机器人间循环闭合而鲁棒到异常值来改善其局部轨迹估计。最后,每个机器人使用其改进的轨迹估计来使用网格变形技术来校正本地网格。我们在光逼真模拟,SLAM基准测试数据集中展示了Kimera-Multi,以及使用地机器人收集的靠户外数据集。真实和模拟实验都涉及长轨迹(例如,每个机器人高达800米)。实验表明,在鲁棒性和准确性方面,kimera-multi(i)优于现有技术,(ii)在完全分布的同时实现与集中式大满贯系统相当的估计误差,(iii)在通信带宽方面是显着的(iv)产生精确的公制语义3D网格,并且(v)是模块化的,也可以用于标准3D重建(即,没有语义标签)或轨迹估计(即,不重建3D网格)。
translated by 谷歌翻译
多机器人大满贯系统在受GPS污染的环境中需要循环封闭以维护无漂移的集中式地图。随着越来越多的机器人和环境大小,检查和计算所有循环闭合候选者的转换变得不可行。在这项工作中,我们描述了一个循环闭合模块,该模块能够优先考虑哪个循环闭合以根据基础姿势图,与已知信标的接近性以及点云的特性进行计算。我们在DARPA地下挑战和许多具有挑战性的地下数据集中验证该系统,并证明该系统能够生成和保持低误差的地图。我们发现,我们提出的技术能够选择有效的循环封闭,与探空量解决方案相比,与没有优先级排序的基线版本相比,中位误差的平均值减少了51%,中位误差的平均误差和平均值减少了75%。我们还发现,与处理四个半小时内每个可能的循环封闭的系统相比,我们提出的系统能够在一小时的任务时间内找到较低的错误。可以找到此工作的代码和数据集https://github.com/nebula-autonomy/lamp
translated by 谷歌翻译
我们描述了一种使用机器人应用程序中常见的一类离散连续因子图进行平滑和映射的通用方法。虽然有公开可用的工具提供灵活且易于使用的接口,以指定和解决以离散或连续图形模型提出的优化问题,但目前尚无类似的一般工具,可以为混合离散性问题提供相同的功能。我们旨在解决这个问题。特别是,我们提供了一个库DC-SAM,将现有的工具扩展为以因子图定义的优化问题,以设置离散模型的设置。我们工作的关键贡献是一种新颖的解决方案,用于有效地回收离散连续优化问题的近似解决方案。我们方法的关键见解是,虽然对连续和离散状态空间的共同推断通常很难,但许多通常遇到的离散连续问题自然可以分为“离散部分”,并且可以轻松地解决的“连续部分” 。利用这种结构,我们以交替的方式优化离散和连续变量。因此,我们提出的工作可以直接表示离散图形模型的直接表示和近似推断。我们还提供了一种方法来恢复离散变量和连续变量的估计值的不确定性。我们通过应用于三个不同的机器人感知应用程序的应用来证明我们的方法的多功能性:点云注册,健壮的姿势图优化以及基于对象的映射和本地化。
translated by 谷歌翻译
我们考虑了一个类别级别的感知问题,其中给定的2D或3D传感器数据描绘了给定类别的对象(例如,汽车),并且必须重建尽管级别的可变性,但必须重建对象的3D姿势和形状(即,不同的汽车模型具有不同的形状)。我们考虑了一个主动形状模型,其中 - 对于对象类别 - 我们获得了一个潜在的CAD模型库,描述该类别中的对象,我们采用了标准公式,其中姿势和形状是通过非非2D或3D关键点估算的-convex优化。我们的第一个贡献是开发PACE3D*和PACE2D*,这是第一个使用3D和2D关键点进行姿势和形状估计的最佳最佳求解器。这两个求解器都依赖于紧密(即精确)半决赛的设计。我们的第二个贡献是开发两个求解器的异常刺激版本,命名为PACE3D#和PACE2D#。为了实现这一目标,我们提出了Robin,Robin是一种一般的图理论框架来修剪异常值,该框架使用兼容性超图来建模测量的兼容性。我们表明,在类别级别的感知问题中,这些超图可以是通过关键点(以2D)或其凸壳(以3D为单位)构建的,并且可以通过最大的超级计算来修剪许多异常值。最后的贡献是广泛的实验评估。除了在模拟数据集和Pascal数据集上提供消融研究外,我们还将求解器与深关键点检测器相结合,并证明PACE3D#在Apolloscape数据集中在车辆姿势估算中改进了最新技术,并且其运行时间是兼容的使用实际应用。
translated by 谷歌翻译
本文提出了一种用于在线增量同时本地化和映射(SLAM)的强大优化方法。由于在存在感知混叠的情况下数据关联的NP硬度,可拖动(大约)数据关联方法将产生错误的测量。我们需要猛烈的后端,在达到在线效率限制的同时,在存在异常值的情况下,可以在存在异常值的情况下将其收敛到准确的解决方案。现有的强大SLAM方法要么对离群值敏感,对初始化越来越敏感,要么无法提供在线效率。我们提出了强大的增量平滑和映射(RISAM)算法,这是一种基于渐变的非跨识别性的稳健后端优化器,用于增量大满贯。我们在基准测试数据集上证明了我们的算法实现在线效率,优于现有的在线方法,并匹配或改善现有的离线方法的性能。
translated by 谷歌翻译
我们为平面姿势图优化提供了一个强大的框架,该框架被环闭合离群值污染。我们的框架首先将截短的最小二乘内核包裹的强大的PGO问题拒绝了异常值,从而拒绝了异常值。然后,该框架引入了线性角度表示,以重写最初用旋转矩阵配制的第一个子问题。该框架配置为渐变的非凸度(GNC)算法,以连续解决两个非凸子问题,而无需初始猜测。得益于两个子问题的线性属性,我们的框架只需要线性求解器才能最佳地解决GNC中遇到的优化问题。我们在平面PGO基准中广泛验证了所提出的框架,称为Degnc-Laf(脱钩的非跨性别量均具有线性角度公式)。事实证明,它比标准和通用GNC的速度显着(有时达到30倍以上),同时导致高质量的估计值。
translated by 谷歌翻译
本文介绍了用于增量平滑和映射(NF-ISAM)的归一化流,这是一种新型算法,用于通过非线性测量模型和非高斯因素来推断SLAM问题中完整的后验分布。NF-ISAM利用了神经网络的表达能力,并将正常的流量训练以建模和对完整的后部进行采样。通过利用贝叶斯树,NF-ISAM启用了类似于ISAM2的有效增量更新,尽管在更具挑战性的非高斯环境中。我们证明了NF-ISAM使用数据关联模棱两可的仅范围的SLAM问题来证明NF-ISAM比最先进的点和分布估计算法的优势。NF-ISAM在描述连续变量(例如位置)和离散变量(例如数据关联)的后验信仰方面提出了卓越的准确性。
translated by 谷歌翻译
Outier-bubust估计是一个基本问题,已由统计学家和从业人员进行了广泛的研究。在过去的几年中,整个研究领域的融合都倾向于“算法稳定统计”,该统计数据的重点是开发可拖动的异常体 - 固定技术来解决高维估计问题。尽管存在这种融合,但跨领域的研究工作主要彼此断开。本文桥接了有关可认证的异常抗衡器估计的最新工作,该估计是机器人技术和计算机视觉中的几何感知,并在健壮的统计数据中并行工作。特别是,我们适应并扩展了最新结果对可靠的线性回归(适用于<< 50%异常值的低外壳案例)和列表可解码的回归(适用于>> 50%异常值的高淘汰案例)在机器人和视觉中通常发现的设置,其中(i)变量(例如旋转,姿势)属于非convex域,(ii)测量值是矢量值,并且(iii)未知的异常值是先验的。这里的重点是绩效保证:我们没有提出新算法,而是为投入测量提供条件,在该输入测量值下,保证现代估计算法可以在存在异常值的情况下恢复接近地面真相的估计值。这些条件是我们所谓的“估计合同”。除了现有结果的拟议扩展外,我们认为本文的主要贡献是(i)通过指出共同点和差异来统一平行的研究行,(ii)在介绍先进材料(例如,证明总和证明)中的统一行为。对从业者的可访问和独立的演讲,(iii)指出一些即时的机会和开放问题,以发出异常的几何感知。
translated by 谷歌翻译
量化不确定性是主动同时本地化和映射(SLAM)的关键阶段,因为它允许确定执行的最有用的动作。但是,处理完整的协方差甚至Fisher信息矩阵(FIMS)在计算上是沉重的,并且很容易在线系统上棘手。在这项工作中,我们研究了通过\ textit {se(n)}提出的主动图 - 峰的范式,并提出了系统FIM与基础姿势的拉普拉斯矩阵之间的一般关系。此链接使使用图形连接索引作为具有最佳保证的实用程序函数,因为它们近似源于最佳设计理论的众所周知的最佳标准。实验验证表明,所提出的方法会导致在一小部分时间内进行主动猛击的等效决策。
translated by 谷歌翻译
为了在多个机器人系统中有效完成任务,必须解决的问题是同时定位和映射(SLAM)。激光雷达(光检测和范围)由于其出色的精度而用于许多SLAM解决方案,但其性能在无特征环境(如隧道或长走廊)中降低。集中式大满贯解决了云服务器的问题,云服务器需要大量的计算资源,并且缺乏针对中央节点故障的鲁棒性。为了解决这些问题,我们提出了一个分布式的SLAM解决方案,以使用超宽带(UWB)范围和探测测量值估算一组机器人的轨迹。所提出的方法在机器人团队之间分配了处理,并显着减轻了从集中式大满贯出现的计算问题。我们的解决方案通过最大程度地减少在机器人处于近距离接近时在不同位置进行的UWB范围测量方法来确定两个机器人之间的相对姿势(也称为环闭合)。 UWB在视线条件下提供了良好的距离度量,但是由于机器人的噪声和不可预测的路径,检索精确的姿势估计仍然是一个挑战。为了处理可疑的循环封闭,我们使用成对的一致性最大化(PCM)来检查循环封闭质量并执行异常拒绝。然后,在分布式姿势图优化(DPGO)模块中将过滤的环闭合与探光仪融合,以恢复机器人团队的完整轨迹。进行了广泛的实验以验证所提出的方法的有效性。
translated by 谷歌翻译
近年来我们目睹了巨大进展的动机,本文提出了对协作同时定位和映射(C-SLAM)主题的科学文献的调查,也称为多机器人猛击。随着地平线上的自动驾驶车队和工业应用中的多机器人系统的兴起,我们相信合作猛击将很快成为未来机器人应用的基石。在本调查中,我们介绍了C-Slam的基本概念,并呈现了彻底的文献综述。我们还概述了C-Slam在鲁棒性,通信和资源管理方面的主要挑战和限制。我们通过探索该地区目前的趋势和有前途的研究途径得出结论。
translated by 谷歌翻译
因子图最近被出现为GNSS定位的替代解决方法。在本文中,我们审查了因素图在GNSS中实施了,它们与卡尔曼滤波器的一些优点,以及它们在使定位解决方案更强大地降解测量方面的重要性。我们还讨论了因子图如何成为现场无线电导航社区的重要工具。
translated by 谷歌翻译
现代状态估计通常被表达为优化问题,并使用有效的本地搜索方法解决。这些方法最能保证与本地最小值的融合,但是在某些情况下,全球最优性也可以得到认证。尽管此类全球最佳证书已经为3D姿势格言优化确定了,但是对于基于3D地标的SLAM问题,尚未确定细节,其中估计的状态包括机器人姿势和地图地标。在本文中,我们通过使用图理论方法来解决这一差距,将基于里程碑的SLAM的子问题投入到一种形式,该形式产生了足够的全球最优状态。存在计算这些子问题的最佳证书的有效方法,但首先需要构建大型数据矩阵。我们表明,该矩阵可以以复杂性构建,该复杂性在地标数量中保持线性,并且不超过一个局部求解器的最新计算复杂性。最后,我们证明了证书对基于模拟和现实世界标记的大满贯问题的功效。
translated by 谷歌翻译
Spatial perception is a key task in several robotics applications. In general, it involves the nonlinear estimation of hidden variables that represent the state of the robot/environment. However, in the presence of outliers the standard nonlinear least squared formulation results in poor estimates. Several methods have been considered in the literature to improve the reliability of the estimation process. Most methods are based on heuristics since guaranteed global robust estimation is not generally practical due to high computational costs. Recently general purpose robust estimation heuristics have been proposed that leverage existing non-minimal solvers available for the outlier-free formulations without the need for an initial guess. In this work, we propose two similar heuristics backed by Bayesian theory. We evaluate these heuristics in practical scenarios to demonstrate their merits in different applications including 3D point cloud registration, mesh registration and pose graph optimization.
translated by 谷歌翻译
在未知和大规模的地下环境中,与一组异质的移动机器人团队进行搜救,需要高精度的本地化和映射。在复杂和感知衰落的地下环境中,这一至关重要的需求面临许多挑战,因为在船上感知系统需要在非警官条件下运作(由于黑暗和灰尘,坚固而泥泞的地形以及自我的存在以及自我的存在,都需要运作。 - 类似和模棱两可的场景)。在灾难响应方案和缺乏有关环境的先前信息的情况下,机器人必须依靠嘈杂的传感器数据并执行同时定位和映射(SLAM)来构建环境的3D地图,并定位自己和潜在的幸存者。为此,本文报告了Team Costar在DARPA Subterranean Challenge的背景下开发的多机器人大满贯系统。我们通过合并一个可适应不同的探针源和激光镜配置的单机器人前端界面来扩展以前的工作,即LAMP,这是一种可伸缩的多机前端,以支持大型大型和内部旋转循环闭合检测检测规模环境和多机器人团队,以及基于渐变的非凸度的稳健后端,配备了异常弹性姿势图优化。我们提供了有关多机器人前端和后端的详细消融研究,并评估美国跨矿山,发电厂和洞穴收集的挑战现实世界中的整体系统性能。我们还发布了我们的多机器人后端数据集(以及相应的地面真相),可以作为大规模地下大满贯的具有挑战性的基准。
translated by 谷歌翻译
We argue the case for Gaussian Belief Propagation (GBP) as a strong algorithmic framework for the distributed, generic and incremental probabilistic estimation we need in Spatial AI as we aim at high performance smart robots and devices which operate within the constraints of real products. Processor hardware is changing rapidly, and GBP has the right character to take advantage of highly distributed processing and storage while estimating global quantities, as well as great flexibility. We present a detailed tutorial on GBP, relating to the standard factor graph formulation used in robotics and computer vision, and give several simulation examples with code which demonstrate its properties.
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
我们考虑分布式姿势图优化(PGO)的问题,该问题在多机器人同时定位和映射(SLAM)中具有重要的应用。我们提出了用于分布式PGO($ \ mathsf {mm \!\!\!\!\!pgo} $)的大量最小化方法(mm)方法,该方法适用于一类宽类强大的损失内核。 $ \ mathsf {mm \!\! - \!\!pgo} $方法可以在轻度条件下收敛到一阶关键点。此外,请注意$ \ mathsf {mm \!\! - ! - \!\!pgo} $方法是让人联想到近端方法,我们利用Nesterov的方法并采用自适应重启来加速收敛。生成的分布式PGO的加速MM方法 - 既有网络中的主节点($ \ Mathsf {amm \!\!\!\!\!\! ! - \!\!pgo}^{#} $) - 与$ \ mathsf {mm \!\!\! - \!\!pgo} $相比,收敛速度更快,而无需牺牲理论保证。特别是,$ \ mathsf {amm \!\!\! - \!\! $ \ mathsf {amm \!\!\!\!pgo}^*$使用主节点从所有其他节点汇总信息。这项工作的功效通过对2D和3D SLAM基准数据集的广泛应用以及与现有最新方法的全面比较来验证,这表明我们的MM方法更快地收敛,并为分布式PGO提供更好的解决方案。
translated by 谷歌翻译