我们为平面姿势图优化提供了一个强大的框架,该框架被环闭合离群值污染。我们的框架首先将截短的最小二乘内核包裹的强大的PGO问题拒绝了异常值,从而拒绝了异常值。然后,该框架引入了线性角度表示,以重写最初用旋转矩阵配制的第一个子问题。该框架配置为渐变的非凸度(GNC)算法,以连续解决两个非凸子问题,而无需初始猜测。得益于两个子问题的线性属性,我们的框架只需要线性求解器才能最佳地解决GNC中遇到的优化问题。我们在平面PGO基准中广泛验证了所提出的框架,称为Degnc-Laf(脱钩的非跨性别量均具有线性角度公式)。事实证明,它比标准和通用GNC的速度显着(有时达到30倍以上),同时导致高质量的估计值。
translated by 谷歌翻译
本文提出了Kimera-Multi,第一个多机器人系统,(i)是强大的,并且能够识别和拒绝由感知混叠产生的不正确和内部机器人循环闭合,(ii)完全分布,仅依赖于本地(点对点)通信实现分布式本地化和映射,(iii)实时构建环境的全球一致的度量标准三维网状模型,其中网格的面部用语义标签注释。 Kimera-Multi由配备有视觉惯性传感器的机器人团队实现。每个机器人都构建了局部轨迹估计和使用Kimera的本地网格。当通信可用时,机器人基于一种基于新型分布式刻度非凸性算法发起分布式地点识别和鲁棒姿态图优化协议。所提出的协议允许机器人通过利用机器人间循环闭合而鲁棒到异常值来改善其局部轨迹估计。最后,每个机器人使用其改进的轨迹估计来使用网格变形技术来校正本地网格。我们在光逼真模拟,SLAM基准测试数据集中展示了Kimera-Multi,以及使用地机器人收集的靠户外数据集。真实和模拟实验都涉及长轨迹(例如,每个机器人高达800米)。实验表明,在鲁棒性和准确性方面,kimera-multi(i)优于现有技术,(ii)在完全分布的同时实现与集中式大满贯系统相当的估计误差,(iii)在通信带宽方面是显着的(iv)产生精确的公制语义3D网格,并且(v)是模块化的,也可以用于标准3D重建(即,没有语义标签)或轨迹估计(即,不重建3D网格)。
translated by 谷歌翻译
3D点云登记在遥感,摄影测量,机器人和几何计算机视觉中排名最基本的问题。由于3D特征匹配技术的准确性有限,因此可能存在异常值,有时即使在非常大的数字中,则在该对应中也是如此。由于现有的强大的求解器可能会遇到高计算成本或限制性的稳健性,因此我们提出了一种名为VoCra(具有成本函数和旋转平均的投票的新颖,快速,高度强大的解决方案,为极端异常率的点云注册问题。我们的第一款贡献是聘请Tukey的双重强大的成本来引入新的投票和对应分类技术,这证明是在异常值中区分真正的入世性,即使是极端(99%)的异常率。我们的第二次贡献包括基于强大的旋转平均设计时效的共识最大化范例,用于在通信中寻求Inlier候选人。最后,我们使用Tukey的Biweight(GNC-TB)应用毕业的非凸性,以估计所获得的Inlier候选者的正确变换,然后使用它来找到完整的Inlier集。进行了应用于两个实体数据问题的标准基准和现实实验,并且我们表明我们的求解器VORCA对超过99%的异常值较高,而且比最先进的竞争对手更多的时间效率。
translated by 谷歌翻译
姿势图优化是在机器人感知的许多领域遇到的非凸优化问题。它的收敛到准确的解决方案由两个因素来调节:使用成本函数的非线性和姿势变量的初始配置。在本文中,我们提出了Hipe,这是一种用于姿势图初始化的新型分层算法。我们的方法利用了一个粗粒图,该图编码了问题几何形状的抽象表示。我们通过结合来自输入本地区域的最大似然估计来构建此图。通过利用这种表示的稀疏性,我们可以以非线性方式初始化姿势图,而无需与现有方法相比,没有计算开销。最终的初始猜测可以有效地引导用于获得最终解决方案的细粒优化。此外,我们对不同成本函数对最终估计的影响进行了经验分析。我们的实验评估表明,HIPE的使用导致更有效,更健壮的优化过程,与最先进的方法相比。
translated by 谷歌翻译
我们描述了一种使用机器人应用程序中常见的一类离散连续因子图进行平滑和映射的通用方法。虽然有公开可用的工具提供灵活且易于使用的接口,以指定和解决以离散或连续图形模型提出的优化问题,但目前尚无类似的一般工具,可以为混合离散性问题提供相同的功能。我们旨在解决这个问题。特别是,我们提供了一个库DC-SAM,将现有的工具扩展为以因子图定义的优化问题,以设置离散模型的设置。我们工作的关键贡献是一种新颖的解决方案,用于有效地回收离散连续优化问题的近似解决方案。我们方法的关键见解是,虽然对连续和离散状态空间的共同推断通常很难,但许多通常遇到的离散连续问题自然可以分为“离散部分”,并且可以轻松地解决的“连续部分” 。利用这种结构,我们以交替的方式优化离散和连续变量。因此,我们提出的工作可以直接表示离散图形模型的直接表示和近似推断。我们还提供了一种方法来恢复离散变量和连续变量的估计值的不确定性。我们通过应用于三个不同的机器人感知应用程序的应用来证明我们的方法的多功能性:点云注册,健壮的姿势图优化以及基于对象的映射和本地化。
translated by 谷歌翻译
本文提出了一种用于在线增量同时本地化和映射(SLAM)的强大优化方法。由于在存在感知混叠的情况下数据关联的NP硬度,可拖动(大约)数据关联方法将产生错误的测量。我们需要猛烈的后端,在达到在线效率限制的同时,在存在异常值的情况下,可以在存在异常值的情况下将其收敛到准确的解决方案。现有的强大SLAM方法要么对离群值敏感,对初始化越来越敏感,要么无法提供在线效率。我们提出了强大的增量平滑和映射(RISAM)算法,这是一种基于渐变的非跨识别性的稳健后端优化器,用于增量大满贯。我们在基准测试数据集上证明了我们的算法实现在线效率,优于现有的在线方法,并匹配或改善现有的离线方法的性能。
translated by 谷歌翻译
我们考虑分布式姿势图优化(PGO)的问题,该问题在多机器人同时定位和映射(SLAM)中具有重要的应用。我们提出了用于分布式PGO($ \ mathsf {mm \!\!\!\!\!pgo} $)的大量最小化方法(mm)方法,该方法适用于一类宽类强大的损失内核。 $ \ mathsf {mm \!\! - \!\!pgo} $方法可以在轻度条件下收敛到一阶关键点。此外,请注意$ \ mathsf {mm \!\! - ! - \!\!pgo} $方法是让人联想到近端方法,我们利用Nesterov的方法并采用自适应重启来加速收敛。生成的分布式PGO的加速MM方法 - 既有网络中的主节点($ \ Mathsf {amm \!\!\!\!\!\! ! - \!\!pgo}^{#} $) - 与$ \ mathsf {mm \!\!\! - \!\!pgo} $相比,收敛速度更快,而无需牺牲理论保证。特别是,$ \ mathsf {amm \!\!\! - \!\! $ \ mathsf {amm \!\!\!\!pgo}^*$使用主节点从所有其他节点汇总信息。这项工作的功效通过对2D和3D SLAM基准数据集的广泛应用以及与现有最新方法的全面比较来验证,这表明我们的MM方法更快地收敛,并为分布式PGO提供更好的解决方案。
translated by 谷歌翻译
Spatial perception is a key task in several robotics applications. In general, it involves the nonlinear estimation of hidden variables that represent the state of the robot/environment. However, in the presence of outliers the standard nonlinear least squared formulation results in poor estimates. Several methods have been considered in the literature to improve the reliability of the estimation process. Most methods are based on heuristics since guaranteed global robust estimation is not generally practical due to high computational costs. Recently general purpose robust estimation heuristics have been proposed that leverage existing non-minimal solvers available for the outlier-free formulations without the need for an initial guess. In this work, we propose two similar heuristics backed by Bayesian theory. We evaluate these heuristics in practical scenarios to demonstrate their merits in different applications including 3D point cloud registration, mesh registration and pose graph optimization.
translated by 谷歌翻译
我们考虑了一个类别级别的感知问题,其中给定的2D或3D传感器数据描绘了给定类别的对象(例如,汽车),并且必须重建尽管级别的可变性,但必须重建对象的3D姿势和形状(即,不同的汽车模型具有不同的形状)。我们考虑了一个主动形状模型,其中 - 对于对象类别 - 我们获得了一个潜在的CAD模型库,描述该类别中的对象,我们采用了标准公式,其中姿势和形状是通过非非2D或3D关键点估算的-convex优化。我们的第一个贡献是开发PACE3D*和PACE2D*,这是第一个使用3D和2D关键点进行姿势和形状估计的最佳最佳求解器。这两个求解器都依赖于紧密(即精确)半决赛的设计。我们的第二个贡献是开发两个求解器的异常刺激版本,命名为PACE3D#和PACE2D#。为了实现这一目标,我们提出了Robin,Robin是一种一般的图理论框架来修剪异常值,该框架使用兼容性超图来建模测量的兼容性。我们表明,在类别级别的感知问题中,这些超图可以是通过关键点(以2D)或其凸壳(以3D为单位)构建的,并且可以通过最大的超级计算来修剪许多异常值。最后的贡献是广泛的实验评估。除了在模拟数据集和Pascal数据集上提供消融研究外,我们还将求解器与深关键点检测器相结合,并证明PACE3D#在Apolloscape数据集中在车辆姿势估算中改进了最新技术,并且其运行时间是兼容的使用实际应用。
translated by 谷歌翻译
Outier-bubust估计是一个基本问题,已由统计学家和从业人员进行了广泛的研究。在过去的几年中,整个研究领域的融合都倾向于“算法稳定统计”,该统计数据的重点是开发可拖动的异常体 - 固定技术来解决高维估计问题。尽管存在这种融合,但跨领域的研究工作主要彼此断开。本文桥接了有关可认证的异常抗衡器估计的最新工作,该估计是机器人技术和计算机视觉中的几何感知,并在健壮的统计数据中并行工作。特别是,我们适应并扩展了最新结果对可靠的线性回归(适用于<< 50%异常值的低外壳案例)和列表可解码的回归(适用于>> 50%异常值的高淘汰案例)在机器人和视觉中通常发现的设置,其中(i)变量(例如旋转,姿势)属于非convex域,(ii)测量值是矢量值,并且(iii)未知的异常值是先验的。这里的重点是绩效保证:我们没有提出新算法,而是为投入测量提供条件,在该输入测量值下,保证现代估计算法可以在存在异常值的情况下恢复接近地面真相的估计值。这些条件是我们所谓的“估计合同”。除了现有结果的拟议扩展外,我们认为本文的主要贡献是(i)通过指出共同点和差异来统一平行的研究行,(ii)在介绍先进材料(例如,证明总和证明)中的统一行为。对从业者的可访问和独立的演讲,(iii)指出一些即时的机会和开放问题,以发出异常的几何感知。
translated by 谷歌翻译
In recent years, aerial swarm technology has developed rapidly. In order to accomplish a fully autonomous aerial swarm, a key technology is decentralized and distributed collaborative SLAM (CSLAM) for aerial swarms, which estimates the relative pose and the consistent global trajectories. In this paper, we propose $D^2$SLAM: a decentralized and distributed ($D^2$) collaborative SLAM algorithm. This algorithm has high local accuracy and global consistency, and the distributed architecture allows it to scale up. $D^2$SLAM covers swarm state estimation in two scenarios: near-field state estimation for high real-time accuracy at close range and far-field state estimation for globally consistent trajectories estimation at the long-range between UAVs. Distributed optimization algorithms are adopted as the backend to achieve the $D^2$ goal. $D^2$SLAM is robust to transient loss of communication, network delays, and other factors. Thanks to the flexible architecture, $D^2$SLAM has the potential of applying in various scenarios.
translated by 谷歌翻译
本文介绍了一种在同时定位和映射(SLAM)框架中进行可靠测量的方法。现有方法在成对的基础上检查一致性或兼容性,但是在成对场景中,许多测量类型都没有足够的约束,以确定是否与其他测量不一致。本文介绍了组-K $一致性最大化(G $ K $ cm),该估计最大的测量值是内部组的一致性。可以为最大的组$ k $一致测量的求解作为广义图上最大集团问题的实例,并可以通过调整电流方法来解决。本文使用模拟数据评估了G $ K $ CM的性能,并将其与以前工作中介绍的成对一致性最大化(PCM)进行比较。
translated by 谷歌翻译
我们提出了Theseus,这是一个有效的应用程序不合时宜的开源库,用于在Pytorch上构建的可区分非线性最小二乘(DNL)优化,为机器人技术和视觉中的端到端结构化学习提供了一个共同的框架。现有的DNLS实施是特定应用程序的,并且并不总是纳入许多对效率重要的成分。 Theseus是应用程序不可静止的,正如我们使用的几个示例应用程序所用的,这些应用程序是使用相同的基础可区分组件构建的,例如二阶优化器,标准成本功能和Lie组。为了提高效率,TheseUS纳入了对稀疏求解器,自动矢量化,批处理,GPU加速度和梯度计算的支持,并具有隐式分化和直接损耗最小化。我们在一组应用程序中进行了广泛的性能评估,显示出这些功能时显示出明显的效率提高和更好的可扩展性。项目页面:https://sites.google.com/view/theseus-ai
translated by 谷歌翻译
作为解决多视图注册问题的有效算法,已经对运动平均(MA)算法进行了广泛的研究,并引入了许多基于MA的算法。他们旨在从相对动作中恢复全球动作,并利用信息冗余到平均累积错误。但是,这些方法的一个属性是,它们使用ugas-newton方法来解决最小二乘问题以增加全球运动的增加,这可能会导致效率低下,并且对异常值的稳健性差。在本文中,我们提出了一个新的运动平均框架,用于使用Laplacian基于Laplacian的最大Correntropy Criterion(LMCC)进行多视图注册。利用Lie代数运动框架和CorrentRopy量度,我们提出了一种新的成本函数,该功能应考虑相对动作提供的所有约束。获得用于纠正全局动作的增量,可以进一步提出为旨在最大化成本函数的优化问题。凭借二次技术,可以通过分为两个子问题来解决优化问题,即根据当前残差计算每个相对运动的重量,并解决二阶锥体程序问题(SOCP)以增加下一个迭代。我们还提供了一种新的策略来确定内核宽度,以确保我们的方法可以有效利用许多异常值的相对运动提供的信息冗余。最后,我们将提出的方法与其他基于MA的多视图注册方法进行比较,以验证其性能。关于合成和实际数据的实验测试表明,我们的方法在效率,准确性和鲁棒性方面取得了卓越的性能。
translated by 谷歌翻译
姿势图优化是同时定位和映射问题的一种特殊情况,其中唯一要估计的变量是姿势变量,而唯一的测量值是施加间约束。绝大多数PGO技术都是基于顶点的(变量是机器人姿势),但是最近的工作以相对方式参数化了姿势图优化问题(变量是姿势之间的变换),利用最小循环基础来最大程度地提高范围的稀疏性。问题。我们以增量方式探索周期基础的构建,同时最大程度地提高稀疏性。我们验证一种算法,该算法逐渐构建稀疏循环基础,并将其性能与最小循环基础进行比较。此外,我们提出了一种算法,以近似两个图表的最小周期基础,这些图在多代理方案中常见。最后,姿势图优化的相对参数化仅限于使用SE(2)或SE(3)上的刚体变换作为姿势之间的约束。我们引入了一种方法,以允许在相对姿势图优化问题中使用低度测量值。我们对标准基准,模拟数据集和自定义硬件的算法进行了广泛的验证。
translated by 谷歌翻译
在这项工作中,我们介绍了配备有明确性能的第一个初始化方法,该方法适用于姿势图同时定位和映射(SLAM)和旋转平均(RA)问题。 SLAM和旋转平均通常正义为大规模的非渗透点估计问题,具有许多糟糕的本地最小值,可以捕获通常应用的平滑优化方法来解决它们;因此,标准SLAM和RA算法的性能至关重要取决于用于初始化该本地搜索的估计的质量。虽然在文献中出现了SLAM和RA的许多初始化方法,但通常可以获得纯粹的启发式近似值,这使得难以确定是否(或在什么情况下)这些技术可以可靠地部署这些技术。相比之下,在这项工作中,我们研究通过光谱松弛镜头初始化的问题。具体而言,我们推出了SLAM和RA的简单谱弛豫,其形式使我们能够利用经典的线性代数技术(特征向量扰动界限)来控制从我们的光谱估计到(未知)地基实际和该距离作为测量噪声的函数的估计问题的全局最小化器。我们的结果揭示了测量网络在控制估计精度下播放的光谱图 - 理论性能的关键作用;此外,作为我们分析的副产物,我们在估计误差上获得了最大似然估计的估计误差,这可能具有独立兴趣。最后,我们在实验上展示了我们的光谱估计器在实践中非常有效,与现有的最先进技术相比,在较低的计算成本下生产可比或优异质量的初始化。
translated by 谷歌翻译
为了在多个机器人系统中有效完成任务,必须解决的问题是同时定位和映射(SLAM)。激光雷达(光检测和范围)由于其出色的精度而用于许多SLAM解决方案,但其性能在无特征环境(如隧道或长走廊)中降低。集中式大满贯解决了云服务器的问题,云服务器需要大量的计算资源,并且缺乏针对中央节点故障的鲁棒性。为了解决这些问题,我们提出了一个分布式的SLAM解决方案,以使用超宽带(UWB)范围和探测测量值估算一组机器人的轨迹。所提出的方法在机器人团队之间分配了处理,并显着减轻了从集中式大满贯出现的计算问题。我们的解决方案通过最大程度地减少在机器人处于近距离接近时在不同位置进行的UWB范围测量方法来确定两个机器人之间的相对姿势(也称为环闭合)。 UWB在视线条件下提供了良好的距离度量,但是由于机器人的噪声和不可预测的路径,检索精确的姿势估计仍然是一个挑战。为了处理可疑的循环封闭,我们使用成对的一致性最大化(PCM)来检查循环封闭质量并执行异常拒绝。然后,在分布式姿势图优化(DPGO)模块中将过滤的环闭合与探光仪融合,以恢复机器人团队的完整轨迹。进行了广泛的实验以验证所提出的方法的有效性。
translated by 谷歌翻译
束调整(BA)是指同时确定传感器姿势和场景几何形状的问题,这是机器人视觉中的一个基本问题。本文为LIDAR传感器提供了一种有效且一致的捆绑捆绑调整方法。该方法采用边缘和平面特征来表示场景几何形状,并直接最大程度地减少从每个原始点到各自几何特征的天然欧几里得距离。该公式的一个不错的属性是几何特征可以在分析上解决,从而大大降低了数值优化的维度。为了更有效地表示和解决最终的优化问题,本文提出了一个新颖的概念{\ it point clusters},该概念编码了通过一组紧凑的参数集与同一特征相关联的所有原始点,{\ it点群集坐标} 。我们根据点簇坐标得出BA优化的封闭形式的衍生物,并显示其理论属性,例如零空间和稀疏性。基于这些理论结果,本文开发了有效的二阶BA求解器。除了估计LiDAR姿势外,求解器还利用二阶信息来估计测量噪声引起的姿势不确定性,从而导致对LIDAR姿势的一致估计。此外,由于使用点群集的使用,开发的求解器从根本上避免了在优化的所有步骤中列出每个原始点(由于数量大量而非常耗时):成本评估,衍生品评估和不确定性评估。我们的方法的实施是开源的,以使机器人界及其他地区受益。
translated by 谷歌翻译
This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.
translated by 谷歌翻译
One of the main limitations of the commonly used Absolute Trajectory Error (ATE) is that it is highly sensitive to outliers. As a result, in the presence of just a few outliers, it often fails to reflect the varying accuracy as the inlier trajectory error or the number of outliers varies. In this work, we propose an alternative error metric for evaluating the accuracy of the reconstructed camera trajectory. Our metric, named Discernible Trajectory Error (DTE), is computed in four steps: (1) Shift the ground-truth and estimated trajectories such that both of their geometric medians are located at the origin. (2) Rotate the estimated trajectory such that it minimizes the sum of geodesic distances between the corresponding camera orientations. (3) Scale the estimated trajectory such that the median distance of the cameras to their geometric median is the same as that of the ground truth. (4) Compute the distances between the corresponding cameras, and obtain the DTE by taking the average of the mean and root-mean-square (RMS) distance. This metric is an attractive alternative to the ATE, in that it is capable of discerning the varying trajectory accuracy as the inlier trajectory error or the number of outliers varies. Using the similar idea, we also propose a novel rotation error metric, named Discernible Rotation Error (DRE), which has similar advantages to the DTE. Furthermore, we propose a simple yet effective method for calibrating the camera-to-marker rotation, which is needed for the computation of our metrics. Our methods are verified through extensive simulations.
translated by 谷歌翻译