相互联系的复杂系统通常由于内部不确定性和外部负面影响而受到干扰,例如严酷的操作环境或区域自然灾害事件引起的影响。为了在内部和外部挑战下保持相互联系的网络系统的运行,通过更好的设计和提高故障恢复功能来增强系统的可靠性,进行了弹性研究的设计。至于增强设计,由于现代系统的规模越来越大,并且存在复杂的潜在物理限制,因此出现了设计强大系统的挑战。为了应对这些挑战并有效地设计弹性系统,本研究提出了一种使用图形学习算法的生成设计方法。生成设计框架包含性能估计器和候选设计生成器。发电机可以从现有系统中明智地挖掘出良好的属性,并输出符合预定义绩效标准的新设计。尽管估计器可以有效地预测生成的设计的性能,从而在快速的迭代学习过程中。基于IEEE数据集的电力系统的案例研究结果说明了所提出的方法设计弹性互连系统的适用性。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
图表无处不在地编码许多域中现实世界对象的关系信息。图形生成的目的是从类似于观察到的图形的分布中生成新图形,由于深度学习模型的最新进展,人们的关注越来越大。在本文中,我们对现有的图形生成文献进行了全面综述,从各种新兴方法到其广泛的应用领域。具体来说,我们首先提出了深图生成的问题,并与几个相关的图形学习任务讨论了它的差异。其次,我们根据模型架构将最新方法分为三类,并总结其生成策略。第三,我们介绍了深图生成的三个关键应用领域。最后,我们重点介绍了深图生成的未来研究中的挑战和机遇。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
我们提出了一种基于图形神经网络(GNN)的端到端框架,以平衡通用网格中的功率流。优化被帧为监督的顶点回归任务,其中GNN培训以预测每个网格分支的电流和功率注入,从而产生功率流量平衡。通过将电网表示为与顶点的分支的线图,我们可以培训一个更准确和强大的GNN来改变底层拓扑。此外,通过使用专门的GNN层,我们能够构建一个非常深的架构,该架构占图表上的大街区,同时仅实现本地化操作。我们执行三个不同的实验来评估:i)使用深入GNN模型时使用本地化而不是全球运营的好处和趋势; ii)图形拓扑中对扰动的弹性;和iii)能力同时在多个网格拓扑上同时培训模型以及新的看不见网格的概括性的改进。拟议的框架是有效的,而且与基于深度学习的其他求解器相比,不仅对网格组件上的物理量而且对拓扑的物理量具有鲁棒性。
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
聚类是一项基本的机器学习任务,在文献中已广泛研究。经典聚类方法遵循以下假设:数据通过各种表示的学习技术表示为矢量化形式的特征。随着数据变得越来越复杂和复杂,浅(传统)聚类方法无法再处理高维数据类型。随着深度学习的巨大成功,尤其是深度无监督的学习,在过去的十年中,已经提出了许多具有深层建筑的代表性学习技术。最近,已经提出了深层聚类的概念,即共同优化表示的学习和聚类,因此引起了社区的日益关注。深度学习在聚类中的巨大成功,最基本的机器学习任务之一以及该方向的最新进展的巨大成功所激发。 - 艺术方法。我们总结了深度聚类的基本组成部分,并通过设计深度表示学习和聚类之间的交互方式对现有方法进行了分类。此外,该调查还提供了流行的基准数据集,评估指标和开源实现,以清楚地说明各种实验设置。最后但并非最不重要的一点是,我们讨论了深度聚类的实际应用,并提出了应有的挑战性主题,应将进一步的研究作为未来的方向。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
基于深度学习的图生成方法具有显着的图形数据建模能力,从而使它们能够解决广泛的现实世界问题。使这些方法能够在生成过程中考虑不同的条件,甚至通过授权它们生成满足所需标准的新图形样本来提高其有效性。本文提出了一种条件深图生成方法,称为SCGG,该方法考虑了特定类型的结构条件。具体而言,我们提出的SCGG模型采用初始子图,并自动重新收获在给定条件子结构之上生成新节点及其相应的边缘。 SCGG的体系结构由图表表示网络和自动回归生成模型组成,该模型是端到端训练的。使用此模型,我们可以解决图形完成,这是恢复缺失的节点及其相关的部分观察图的猖and固有的困难问题。合成数据集和现实世界数据集的实验结果证明了我们方法的优势与最先进的基准相比。
translated by 谷歌翻译
Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
经典可塑性模型的历史依赖性行为通常是由现象学定律演变而来的内部变量驱动的。解释这些内部变量如何代表变形的历史,缺乏直接测量这些内部变量进行校准和验证的困难,以及这些现象学定律的弱物理基础一直被批评为创建现实模型的障碍。在这项工作中,将图形数据(例如有限元解决方案)上的几何机器学习用作建立非线性尺寸还原技术和可塑性模型之间的联系的手段。基于几何学习的编码可以将丰富的时间历史数据嵌入到低维的欧几里得空间上,以便可以在嵌入式特征空间中预测塑性变形的演变。然后,相应的解码器可以将这些低维内变量转换回加权图,从而可以观察和分析塑性变形的主导拓扑特征。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
这篇简短的评论旨在使读者熟悉与计划,调度和学习有关的最新作品。首先,我们研究最先进的计划算法。我们简要介绍神经网络。然后,我们更详细地探索图形神经网络,这是一种适合处理图形结构输入的神经网络的最新变体。我们简要描述了强化学习算法和迄今为止设计的一些方法的概念。接下来,我们研究了一些成功的方法,结合了用于路径规划的神经网络。最后,我们专注于不确定性的时间计划问题。
translated by 谷歌翻译