基于深度学习的图生成方法具有显着的图形数据建模能力,从而使它们能够解决广泛的现实世界问题。使这些方法能够在生成过程中考虑不同的条件,甚至通过授权它们生成满足所需标准的新图形样本来提高其有效性。本文提出了一种条件深图生成方法,称为SCGG,该方法考虑了特定类型的结构条件。具体而言,我们提出的SCGG模型采用初始子图,并自动重新收获在给定条件子结构之上生成新节点及其相应的边缘。 SCGG的体系结构由图表表示网络和自动回归生成模型组成,该模型是端到端训练的。使用此模型,我们可以解决图形完成,这是恢复缺失的节点及其相关的部分观察图的猖and固有的困难问题。合成数据集和现实世界数据集的实验结果证明了我们方法的优势与最先进的基准相比。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
translated by 谷歌翻译
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. For this purpose, they can be defined as many different types which suitably reflect the individual contexts of the represented problem. To address cutting-edge problems based on graph data, the research field of Graph Neural Networks (GNNs) has emerged. Despite the field's youth and the speed at which new models are developed, many recent surveys have been published to keep track of them. Nevertheless, it has not yet been gathered which GNN can process what kind of graph types. In this survey, we give a detailed overview of already existing GNNs and, unlike previous surveys, categorize them according to their ability to handle different graph types and properties. We consider GNNs operating on static and dynamic graphs of different structural constitutions, with or without node or edge attributes. Moreover, we distinguish between GNN models for discrete-time or continuous-time dynamic graphs and group the models according to their architecture. We find that there are still graph types that are not or only rarely covered by existing GNN models. We point out where models are missing and give potential reasons for their absence.
translated by 谷歌翻译
图表无处不在地编码许多域中现实世界对象的关系信息。图形生成的目的是从类似于观察到的图形的分布中生成新图形,由于深度学习模型的最新进展,人们的关注越来越大。在本文中,我们对现有的图形生成文献进行了全面综述,从各种新兴方法到其广泛的应用领域。具体来说,我们首先提出了深图生成的问题,并与几个相关的图形学习任务讨论了它的差异。其次,我们根据模型架构将最新方法分为三类,并总结其生成策略。第三,我们介绍了深图生成的三个关键应用领域。最后,我们重点介绍了深图生成的未来研究中的挑战和机遇。
translated by 谷歌翻译
反转合是药物发现的主要任务。通过许多现有方法,它被称为生成图的问题。具体而言,这些方法首先识别反应中心,并相应地打破靶分子以生成合成子。反应物是通过顺序添加到合成图或直接添加正确的离开组来生成反应物。但是,两种策略都遭受了添加原子以来会导致长期的预测顺序,从而增加了产生难度,同时添加离开组只能考虑训练集中的序列,从而导致概括不佳。在本文中,我们提出了一个新颖的端到端图生成模型,用于逆转录合成预测,该模型顺序识别反应中心,生成合成子,并将基序添加到合成子中以生成反应物。由于化学有意义的基序比原子大,比离开组还小,因此与添加原子相比,与添加离开组相比,我们的方法的预测复杂性较低。基准数据集上的实验表明,所提出的模型显着胜过先前的最新算法。
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
网络完成是一个比链接预测更难的问题,因为它不仅尝试推断丢失的链接,还要推断节点。已经提出了不同的方法来解决此问题,但是很少有人使用结构信息 - 局部连接模式的相似性。在本文中,我们提出了一个名为C-GIN的模型,以根据图形自动编码器框架从网络的观察到的部分捕获局部结构模式,该框架配备了图形同构网络模型,并将这些模式推广到完成整个图形。对来自不同领域的合成和现实世界网络的实验和分析表明,C-Gin可以实现竞争性能,而所需的信息较少,并且在大多数情况下,与基线预测模型相比,可以获得更高的准确性。我们进一步提出了一个基于网络结构的“可达聚类系数(CC)”。实验表明,我们的模型在具有较高可及的CC的网络上表现更好。
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
Counterfactual explanations promote explainability in machine learning models by answering the question "how should an input instance be perturbed to obtain a desired predicted label?". The comparison of this instance before and after perturbation can enhance human interpretation. Most existing studies on counterfactual explanations are limited in tabular data or image data. In this work, we study the problem of counterfactual explanation generation on graphs. A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed: 1) optimizing in the discrete and disorganized space of graphs; 2) generalizing on unseen graphs; and 3) maintaining the causality in the generated counterfactuals without prior knowledge of the causal model. To tackle these challenges, we propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models. Specifically, CLEAR leverages a graph variational autoencoder based mechanism to facilitate its optimization and generalization, and promotes causality by leveraging an auxiliary variable to better identify the underlying causal model. Extensive experiments on both synthetic and real-world graphs validate the superiority of CLEAR over the state-of-the-art methods in different aspects.
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译
许多现代神经架构的核心的卷积运算符可以有效地被视为在输入矩阵和滤波器之间执行点产品。虽然这很容易适用于诸如图像的数据,其可以在欧几里德空间中表示为常规网格,延伸卷积操作者以在图形上工作,而是由于它们的不规则结构而被证明更具有挑战性。在本文中,我们建议使用图形内部产品的图形内核,即在图形上计算内部产品,以将标准卷积运算符扩展到图形域。这使我们能够定义不需要计算输入图的嵌入的完全结构模型。我们的架构允许插入任何类型和数量的图形内核,并具有在培训过程中学到的结构面具方面提供一些可解释性的额外益处,类似于传统卷积神经网络中的卷积掩模发生的事情。我们执行广泛的消融研究,调查模型超参数的影响,我们表明我们的模型在标准图形分类数据集中实现了竞争性能。
translated by 谷歌翻译
在药物发现中,分子优化是在所需药物性质方面将药物候选改变为更好的阶梯。随着近期人工智能的进展,传统上的体外过程越来越促进了Silico方法。我们以硅方法提出了一种创新的,以通过深生成模型制定分子并制定问题,以便产生优化的分子图。我们的生成模型遵循基于片段的药物设计的关键思想,并通过修改其小碎片来优化分子。我们的模型了解如何识别待优化的碎片以及如何通过学习具有良好和不良性质的分子的差异来修改此类碎片。在优化新分子时,我们的模型将学习信号应用于在片段的预测位置解码优化的片段。我们还将多个这样的模型构造成管道,使得管道中的每个模型能够优化一个片段,因此整个流水线能够在需要时改变多个分子片段。我们将我们的模型与基准数据集的其他最先进的方法进行比较,并证明我们的方法在中等分子相似度约束下具有超过80%的性质改善,在高分子相似度约束下具有超过80%的财产改善。 。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
translated by 谷歌翻译
Graph神经网络(GNN)最近已成为使用图的机器学习的主要范式。对GNNS的研究主要集中于消息传递神经网络(MPNNS)的家族。与同构的Weisfeiler-Leman(WL)测试类似,这些模型遵循迭代的邻域聚合过程以更新顶点表示,并通过汇总顶点表示来更新顶点图表。尽管非常成功,但在过去的几年中,对MPNN进行了深入的研究。因此,需要新颖的体系结构,这将使该领域的研究能够脱离MPNN。在本文中,我们提出了一个新的图形神经网络模型,即所谓的$ \ pi $ -gnn,该模型学习了每个图的“软”排列(即双随机)矩阵,从而将所有图形投影到一个共同的矢量空间中。学到的矩阵在输入图的顶点上强加了“软”顺序,并基于此顺序,将邻接矩阵映射到向量中。这些向量可以被送入完全连接或卷积的层,以应对监督的学习任务。在大图的情况下,为了使模型在运行时间和记忆方面更有效,我们进一步放松了双随机矩阵,以使其排列随机矩阵。我们从经验上评估了图形分类和图形回归数据集的模型,并表明它与最新模型达到了性能竞争。
translated by 谷歌翻译