Granger因果关系(GC)检验是一种著名的统计假设检验,用于研究一个时期的过去是否影响了另一个时间的未来。它有助于回答一个问题序列是否有助于预测。 Granger因果关系检测的标准传统方法通常假设线性动力学,但是这种简化在许多现实世界应用中不存在,例如,神经科学或基因组学本质上是非线性的。在这种情况下,施加线性模型,例如向量自回旋(VAR)模型可能会导致对真正的Granger因果相互作用的不一致估计。机器学习(ML)可以学习数据集中的隐藏模式(DL)在学习复杂系统的非线性动力学方面表现出巨大的希望。 Tank等人的最新工作建议通过使用神经网络结合对可学习的权重的稀疏性惩罚来克服VAR模型中线性简化的问题。在这项工作中,我们基于Tank等人引入的想法。我们提出了几类新的模型,这些模型可以处理潜在的非线性。首先,我们介绍了学识渊博的内核var(lekvar)模型 - var模型的扩展,这些模型也学习了通过神经网络参数的内核。其次,我们表明可以通过脱钩的惩罚直接将滞后和单个时间序列的重要性分解。这种去耦提供了更好的缩放,并使我们可以将滞后选择嵌入RNN中。最后,我们提出了一种支持迷你批次的新培训算法,并且它与常用的自适应优化器(例如Adam)兼容。癫痫患者的电脑电图(EEG)数据研究了在19个EEG通道之前,期间和之后的GC演变。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
从观察到的数据中推断因果结构在揭示系统的基本动力学方面起着关键作用。本文揭示了一种新的方法,称为多阶段 - 造成结构学习(MS-Castle),以估计在不同时间尺度上发生的线性因果关系的结构。与现有方法不同,MS-Castle明确考虑了多个时间序列之间的即时和滞后相互关系,以不同的尺度表示,呈现固定小波变换和非凸线优化。 MS-Castle将其作为特殊情况融合了一个名为SS-Castle的单个尺度版本,该版本在计算效率,性能和鲁棒性方面相对于合成数据而言是有利的。我们使用MS-Castle研究了Covid-19-19大流行期间15个全球股票市场风险的多阶段因果结构,这说明了MS-Castle如何通过其多尺度分析(优于SS-Castle)提取有意义的信息。我们发现,最持久和最强烈的互动发生在中期决议。此外,我们确定了在经过考虑的时期内推动风险的股票市场:巴西,加拿大和意大利。拟议的方法可以由金融投资者利用,这些投资者取决于其投资视野,可以从因果关系的角度管理股票投资组合中的风险。
translated by 谷歌翻译
粒子加速器是复杂的设施,可产生大量的结构化数据,并具有明确的优化目标以及精确定义的控制要求。因此,它们自然适合数据驱动的研究方法。来自传感器和监视加速器形式的多元时间序列的数据。在加速器控制和诊断方面,快速的先发制人方法是高度首选的,数据驱动的时间序列预测方法的应用尤其有希望。这篇综述提出了时间序列预测问题,并总结了现有模型,并在各个科学领域的应用中进行了应用。引入了粒子加速器领域中的几次和将来的尝试。预测到粒子加速器的时间序列的应用显示出令人鼓舞的结果和更广泛使用的希望,现有的问题(例如数据一致性和兼容性)已开始解决。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
自回旋运动平均值(ARMA)模型是经典的,可以说是模型时间序列数据的最多研究的方法之一。它具有引人入胜的理论特性,并在从业者中广泛使用。最近的深度学习方法普及了经常性神经网络(RNN),尤其是长期记忆(LSTM)细胞,这些细胞已成为神经时间序列建模中最佳性能和最常见的构件之一。虽然对具有长期效果的时间序列数据或序列有利,但复杂的RNN细胞并不总是必须的,有时甚至可能不如更简单的复发方法。在这项工作中,我们介绍了ARMA细胞,这是一种在神经网络中的时间序列建模的更简单,模块化和有效的方法。该单元可以用于存在复发结构的任何神经网络体系结构中,并自然地使用矢量自动进程处理多元时间序列。我们还引入了Convarma细胞作为空间相关时间序列的自然继任者。我们的实验表明,所提出的方法在性能方面与流行替代方案具有竞争力,同时由于其简单性而变得更加强大和引人注目。
translated by 谷歌翻译
Continuous, automated surveillance systems that incorporate machine learning models are becoming increasingly common in healthcare environments. These models can capture temporally dependent changes across multiple patient variables and can enhance a clinician's situational awareness by providing an early warning alarm of an impending adverse event such as sepsis. However, most commonly used methods, e.g., XGBoost, fail to provide an interpretable mechanism for understanding why a model produced a sepsis alarm at a given time. The ``black box'' nature of many models is a severe limitation as it prevents clinicians from independently corroborating those physiologic features that have contributed to the sepsis alarm. To overcome this limitation, we propose a generalized linear model (GLM) approach to fit a Granger causal graph based on the physiology of several major sepsis-associated derangements (SADs). We adopt a recently developed stochastic monotone variational inequality (VI)-based estimator coupled with forwarding feature selection to learn the graph structure from both continuous and discrete-valued as well as regularly and irregularly sampled time series. Theoretically, we develop a non-asymptotic upper bound on the estimation error for any monotone link function in the GLM. Using synthetic and real-data examples, we demonstrate that the proposed method enjoys result interpretability while achieving comparable performance to popular methods such as XGBoost.
translated by 谷歌翻译
我们为时间事件数据提出了一个新的稀疏Granger-Causal学习框架。我们专注于一种称为Hawkes流程的特定点过程。我们首先指出,霍克斯工艺的大多数现有稀疏因果学习算法在最大似然估计中都具有奇异性。结果,它们的稀疏溶液只能显示为数值伪像。在本文中,我们提出了一个基于基于基数规范化的霍克斯过程的数学定义明确的稀疏因果学习框架,该过程可以纠正现有方法的病理问题。我们利用提出的算法来完成实例因果事件分析的任务,其中稀疏性起着至关重要的作用。我们使用两个真实用例验证了所提出的框架,一个来自电网,另一个来自云数据中心管理域。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
非参数,添加剂模型能够以灵活且可诠释的方式捕获复杂的数据依赖性。但是,选择添加剂组件的格式通常需要非琐碎的数据探索。在这里,作为替代方案,我们提出了Prada-Net,一种单隐层神经网络,具有近端梯度下降和自适应套索的训练。 Prada-Net自动调整神经网络的大小和架构,以反映数据的复杂性和结构。 Prada-Net获得的紧凑型网络可以转换为附加模型组件,使其适用于具有自动模型选择的非参数统计建模。我们在模拟数据上展示了PRADA-NET,其中将PRADA-NET的测试错误性能,可变重要性和可变子集识别属性进行了针对神经网络的其他基于卢赛的正则化方法。我们还将PRADA-NET应用于大量的U.K.黑烟数据集,以演示PRADA-NET如何使用空间和时间部件来模拟复杂和异构数据。与经典的统计非参数方法相比,Prada-Net不需要初步建模来选择添加剂组分的功能形式,但仍然导致可解释的模型表示。
translated by 谷歌翻译
在许多环境环境中的风险管理需要了解驱动极端事件的机制。量化这种风险的有用指标是响应变量的极端分位数,该变量是基于描述气候,生物圈和环境状态的预测变量的。通常,这些分位数位于可观察数据的范围之内,因此,为了估算,需要在回归框架内规范参数极值模型。在这种情况下,经典方法利用预测变量和响应变量之间的线性或加性关系,并在其预测能力或计算效率中受苦;此外,它们的简单性不太可能捕获导致极端野火创造的真正复杂结构。在本文中,我们提出了一个新的方法学框架,用于使用人工中性网络执行极端分位回归,该网络能够捕获复杂的非线性关系并很好地扩展到高维数据。神经网络的“黑匣子”性质意味着它们缺乏从业者通常会喜欢的可解释性的理想特征。因此,我们将线性和加法模型的各个方面与深度学习相结合,以创建可解释的神经网络,这些神经网络可用于统计推断,但保留了高预测准确性。为了补充这种方法,我们进一步提出了一个新颖的点过程模型,以克服与广义极值分布类别相关的有限的下端问题。我们的统一框架的功效在具有高维预测器集的美国野火数据上说明了,我们说明了基于线性和基于样条的回归技术的预测性能的大幅改进。
translated by 谷歌翻译
理解神经动力学的空间和时间特征之间的相互作用可以有助于我们对人脑中信息处理的理解。图形神经网络(GNN)提供了一种新的可能性,可以解释图形结构化信号,如在复杂的大脑网络中观察到的那些。在我们的研究中,我们比较不同的时空GNN架构,并研究他们复制在功能MRI(FMRI)研究中获得的神经活动分布的能力。我们评估GNN模型在MRI研究中各种场景的性能,并将其与VAR模型进行比较,目前主要用于定向功能连接分析。我们表明,即使当可用数据稀缺时,基于基于解剖学基板的局部功能相互作用,基于GNN的方法也能够鲁棒地规模到大型网络研究。通过包括作为信息衬底的解剖连接以进行信息传播,这种GNN还提供了关于指向连接性分析的多模阶视角,提供了研究脑网络中的时空动态的新颖可能性。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
在许多科学学科中,我们有兴趣推断一组观察到的时间序列的非线性动力学系统,这是面对混乱的行为和噪音,这是一项艰巨的任务。以前的深度学习方法实现了这一目标,通常缺乏解释性和障碍。尤其是,即使基本动力学生存在较低维的多种多样的情况下,忠实嵌入通常需要的高维潜在空间也会阻碍理论分析。在树突计算的新兴原则的推动下,我们通过线性样条基础扩展增强了动态解释和数学可牵引的分段线性(PL)复发性神经网络(RNN)。我们表明,这种方法保留了简单PLRNN的所有理论上吸引人的特性,但在相对较低的尺寸中提高了其近似任意非线性动态系统的能力。我们采用两个框架来训练该系统,一个将反向传播的时间(BPTT)与教师强迫结合在一起,另一个将基于快速可扩展的变异推理的基础。我们表明,树枝状扩展的PLRNN可以在各种动力学系统基准上获得更少的参数和尺寸,并与其他方法进行比较,同时保留了可拖动和可解释的结构。
translated by 谷歌翻译
深度学习模型在各种时间序列预测任务中显示出了令人印象深刻的结果,在这些任务中,对过去的未来有条件分布进行建模是本质。但是,当这种条件分布是非平稳的时候,这些模型始终学习并准确预测的挑战。在这项工作中,我们提出了一种新方法,通过清楚地将固定的条件分布模型从非平稳动力学建模中清晰地取消固定的条件分布建模,以对非平稳条件分布进行建模。我们的方法基于贝叶斯动态模型,该模型可以适应条件分布的变化和深层条件分布模型,该模型可以使用分解的输出空间处理大型多元时间序列。我们对合成和流行的公共数据集的实验结果表明,我们的模型可以比最先进的深度学习解决方案更好地适应非平稳时间序列。
translated by 谷歌翻译
在时间序列预测的各种软计算方法中,模糊认知地图(FCM)已经显示出显着的结果作为模拟和分析复杂系统动态的工具。 FCM具有与经常性神经网络的相似之处,可以被分类为神经模糊方法。换句话说,FCMS是模糊逻辑,神经网络和专家系统方面的混合,它作为模拟和研究复杂系统的动态行为的强大工具。最有趣的特征是知识解释性,动态特征和学习能力。本调查纸的目标主要是在文献中提出的最相关和最近的基于FCCM的时间序列预测模型概述。此外,本文认为介绍FCM模型和学习方法的基础。此外,该调查提供了一些旨在提高FCM的能力的一些想法,以便在处理非稳定性数据和可扩展性问题等现实实验中涵盖一些挑战。此外,具有快速学习算法的FCMS是该领域的主要问题之一。
translated by 谷歌翻译
Network-based analyses of dynamical systems have become increasingly popular in climate science. Here we address network construction from a statistical perspective and highlight the often ignored fact that the calculated correlation values are only empirical estimates. To measure spurious behaviour as deviation from a ground truth network, we simulate time-dependent isotropic random fields on the sphere and apply common network construction techniques. We find several ways in which the uncertainty stemming from the estimation procedure has major impact on network characteristics. When the data has locally coherent correlation structure, spurious link bundle teleconnections and spurious high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical networks. We validate our findings with ERA5 reanalysis data. Moreover we explain why commonly applied resampling procedures are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction framework. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions increase robustness, we hope to contribute to more reliable climate network construction in the future.
translated by 谷歌翻译