遗传算法适用于探索大型搜索空间,因为它找到了近似解决方案。由于这一优势,遗传算法在探索诸如分子搜索空间之类的广泛和未知的空间方面是有效的。虽然该算法适用于搜索庞大的化学空间,但是难以在保持分子结构的同时优化药理学特性。为了解决这个问题,我们介绍了一种具有约束分子逆设计的遗传算法。该算法成功地产生了交叉和突变的有效分子。此外,它在使用两相优化粘附到结构约束的同时优化特定属性。实验证明,我们的算法有效地找到满足特定性质的分子,同时保持结构约束。
translated by 谷歌翻译
Machine learning methods have been used to accelerate the molecule optimization process. However, efficient search for optimized molecules satisfying several properties with scarce labeled data remains a challenge for machine learning molecule optimization. In this study, we propose MOMO, a multi-objective molecule optimization framework to address the challenge by combining learning of chemical knowledge with Pareto-based multi-objective evolutionary search. To learn chemistry, it employs a self-supervised codec to construct an implicit chemical space and acquire the continues representation of molecules. To explore the established chemical space, MOMO uses multi-objective evolution to comprehensively and efficiently search for similar molecules with multiple desirable properties. We demonstrate the high performance of MOMO on four multi-objective property and similarity optimization tasks, and illustrate the search capability of MOMO through case studies. Remarkably, our approach significantly outperforms previous approaches in optimizing three objectives simultaneously. The results show the optimization capability of MOMO, suggesting to improve the success rate of lead molecule optimization.
translated by 谷歌翻译
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules (ligands) that bind tightly to a disease-related protein (targets), which is the primary approach to computer-aided drug discovery. Recently, applying deep generative models for three-dimensional (3D) molecular design conditioned on protein pockets to solve SBDD has attracted much attention, but their formulation as probabilistic modeling often leads to unsatisfactory optimization performance. On the other hand, traditional combinatorial optimization methods such as genetic algorithms (GA) have demonstrated state-of-the-art performance in various molecular optimization tasks. However, they do not utilize protein target structure to inform design steps but rely on a random-walk-like exploration, which leads to unstable performance and no knowledge transfer between different tasks despite the similar binding physics. To achieve a more stable and efficient SBDD, we propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior. The neural models take the 3D structure of the targets and ligands as inputs and are pre-trained using native complex structures to utilize the knowledge of the shared binding physics from different targets and then fine-tuned during optimization. We conduct thorough empirical studies on optimizing binding affinity to various disease targets and show that RGA outperforms the baselines in terms of docking scores and is more robust to random initializations. The ablation study also indicates that the training on different targets helps improve performance by leveraging the shared underlying physics of the binding processes. The code is available at https://github.com/futianfan/reinforced-genetic-algorithm.
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译
与靶蛋白具有高结合亲和力的药物样分子的产生仍然是药物发现中的一项困难和资源密集型任务。现有的方法主要采用强化学习,马尔可夫采样或以高斯过程为指导的深层生成模型,在生成具有高结合亲和力的分子时,通过基于计算量的物理学方法计算出的高结合亲和力。我们提出了对分子(豪华轿车)的潜在构成主义,它通过类似于Inceptionism的技术显着加速了分子的产生。豪华轿车采用序列的两个神经网络采用变异自动编码器生成的潜在空间和性质预测,从而使基于梯度的分子特性更快地基于梯度的反相比。综合实验表明,豪华轿车在基准任务上具有竞争力,并且在产生具有高结合亲和力的类似药物的化合物的新任务上,其最先进的技术表现出了最先进的技术,可针对两个蛋白质靶标达到纳摩尔范围。我们通过对绝对结合能的基于更准确的基于分子动力学的计算来证实这些基于对接的结果,并表明我们生成的类似药物的化合物之一的预测$ k_d $(结合亲和力的量度)为$ 6 \ cdot 10^ {-14} $ m针对人类雌激素受体,远远超出了典型的早期药物候选物和大多数FDA批准的药物的亲和力。代码可从https://github.com/rose-stl-lab/limo获得。
translated by 谷歌翻译
在药物发现中,具有所需生物活性的新分子的合理设计是一项至关重要但具有挑战性的任务,尤其是在治疗新的靶家庭或研究靶标时。在这里,我们提出了PGMG,这是一种用于生物活化分子产生的药效团的深度学习方法。PGMG通过药理的指导提供了一种灵活的策略,以使用训练有素的变异自动编码器在各种情况下生成具有结构多样性的生物活性分子。我们表明,PGMG可以在给定药效团模型的情况下生成匹配的分子,同时保持高度的有效性,独特性和新颖性。在案例研究中,我们证明了PGMG在基于配体和基于结构的药物从头设计以及铅优化方案中生成生物活性分子的应用。总体而言,PGMG的灵活性和有效性使其成为加速药物发现过程的有用工具。
translated by 谷歌翻译
自我监督的神经语言模型最近在有机分子和蛋白质序列的生成设计中发现了广泛的应用,以及用于下游结构分类和功能预测的表示学习。但是,大多数现有的分子设计深度学习模型通常都需要一个大数据集并具有黑盒架构,这使得很难解释其设计逻辑。在这里,我们提出了生成分子变压器(GMTRANSFORMER),这是一种用于分子生成设计的概率神经网络模型。我们的模型建立在最初用于文本处理的空白填充语言模型上,该模型在学习具有高质量生成,可解释性和数据效率的“分子语法”方面具有独特的优势。与其他基线相比,我们的模型在摩西数据集上的基准测试后获得了高新颖性和SCAF。概率生成步骤具有修补分子设计的潜力,因为它们有能力推荐如何通过学习的隐式分子化学指导,并通过解释来修饰现有分子。可以在https://github.com/usccolumbia/gmtransformer上自由访问源代码和数据集
translated by 谷歌翻译
在药物发现中,分子优化是在所需药物性质方面将药物候选改变为更好的阶梯。随着近期人工智能的进展,传统上的体外过程越来越促进了Silico方法。我们以硅方法提出了一种创新的,以通过深生成模型制定分子并制定问题,以便产生优化的分子图。我们的生成模型遵循基于片段的药物设计的关键思想,并通过修改其小碎片来优化分子。我们的模型了解如何识别待优化的碎片以及如何通过学习具有良好和不良性质的分子的差异来修改此类碎片。在优化新分子时,我们的模型将学习信号应用于在片段的预测位置解码优化的片段。我们还将多个这样的模型构造成管道,使得管道中的每个模型能够优化一个片段,因此整个流水线能够在需要时改变多个分子片段。我们将我们的模型与基准数据集的其他最先进的方法进行比较,并证明我们的方法在中等分子相似度约束下具有超过80%的性质改善,在高分子相似度约束下具有超过80%的财产改善。 。
translated by 谷歌翻译
深度生成模型吸引了具有所需特性的分子设计的极大关注。大多数现有模型通过顺序添加原子来产生分子。这通常会使产生的分子与目标性能和低合成可接近性较少。诸如官能团的分子片段与分子性质和合成可接近的比原子更密切相关。在此,我们提出了一种基于片段的分子发生模型,其通过顺序向任何给定的起始分子依次向任何给定的起始分子添加分子片段来设计具有靶性质的新分子。我们模型的一个关键特征是属性控制和片段类型方面的高概括能力。通过以自动回归方式学习各个片段对目标属性的贡献来实现前者。对于后者,我们使用深神经网络,其从两个分子的嵌入载体中预测两个分子的键合概率作为输入。在用金砖石分解方法制备片段文库的同时隐式考虑所生成的分子的高合成可用性。我们表明该模型可以以高成功率同时控制多个目标性质的分子。即使在培训数据很少的财产范围内,它也与看不见的片段同样很好地工作,验证高概括能力。作为一种实际应用,我们证明,在对接得分方面,该模型可以产生具有高结合亲和力的潜在抑制剂,其抗对接得分的3CL-COV-2。
translated by 谷歌翻译
通过生成模型生成具有特定化学和生物学特性的新分子已成为药物发现的有希望的方向。但是,现有的方法需要大型数据集进行广泛的培训/微调,在现实世界中通常无法使用。在这项工作中,我们提出了一个新的基于检索的框架,用于可控分子生成。我们使用一系列的示例分子,即(部分)满足设计标准的分子,以引导预先训练的生成模型转向满足给定设计标准的合成分子。我们设计了一种检索机制,该机制将示例分子与输入分子融合在一起,该分子受到一个新的自我监督目标训练,该目标可以预测输入分子的最近邻居。我们还提出了一个迭代改进过程,以动态更新生成的分子和检索数据库,以更好地泛化。我们的方法不可知生成模型,不需要特定于任务的微调。关于从简单设计标准到设计与SARS-COV-2主蛋白酶结合的铅化合物的具有挑战性的现实世界情景的各种任务,我们证明了我们的方法外推出了远远超出检索数据库,并且比检索数据库更高,并且比更高的性能和更广泛的适用性以前的方法。
translated by 谷歌翻译
We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds.
translated by 谷歌翻译
Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, $\textit{e.g.}$, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules $\textit{de novo}$. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a $\textit{renaissance}$ in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
虽然最近在许多科学领域都变得无处不在,但对其评估的关注较少。对于分子生成模型,最先进的是孤立或与其输入有关的输出。但是,它们的生物学和功能特性(例如配体 - 靶标相互作用)尚未得到解决。在这项研究中,提出了一种新型的生物学启发的基准,用于评估分子生成模型。具体而言,设计了三个不同的参考数据集,并引入了与药物发现过程直接相关的一组指标。特别是我们提出了一个娱乐指标,将药物目标亲和力预测和分子对接应用作为评估生成产量的互补技术。虽然所有三个指标均在测试的生成模型中均表现出一致的结果,但对药物目标亲和力结合和分子对接分数进行了更详细的比较,表明单峰预测器可能会导致关于目标结合在分子水平和多模式方法的错误结论,而多模式的方法是错误的结论。因此优选。该框架的关键优点是,它通过明确关注配体 - 靶标相互作用,将先前的物理化学域知识纳入基准测试过程,从而创建了一种高效的工具,不仅用于评估分子生成型输出,而且还用于丰富富含分子生成的输出。一般而言,药物发现过程。
translated by 谷歌翻译
促性腺营养蛋白释放激素受体(GNRH1R)是治疗子宫疾病的有前途的治疗靶标。迄今为止,在临床研究中可以使用几个GNRH1R拮抗剂,而不满足多个财产约束。为了填补这一空白,我们旨在开发一个基于学习的框架,以促进有效,有效地发现具有理想特性的新的口服小型分子药物靶向GNRH1R。在目前的工作中,首先通过充分利用已知活性化合物和靶蛋白的结构的信息,首先提出了配体和结构组合模型,即LS-Molgen,首先提出了分子生成的方法,该信息通过其出色的性能证明了这一点。比分别基于配体或结构方法。然后,进行了A中的计算机筛选,包括活性预测,ADMET评估,分子对接和FEP计算,其中约30,000个生成的新型分子被缩小到8,以进行实验合成和验证。体外和体内实验表明,其中三个表现出有效的抑制活性(化合物5 IC50 = 0.856 nm,化合物6 IC50 = 0.901 nm,化合物7 IC50 = 2.54 nm对GNRH1R,并且化合物5在基本PK属性中表现良好例如半衰期,口服生物利用度和PPB等。我们认为,提议的配体和结构组合结合的分子生成模型和整个计算机辅助工作流程可能会扩展到从头开始的类似任务或铅优化的类似任务。
translated by 谷歌翻译
药物发现对于保护人免受疾病至关重要。基于目标的筛查是过去几十年来开发新药的最流行方法之一。该方法有效地筛选了候选药物在体外抑制靶蛋白,但由于体内所选药物的活性不足,它通常失败。需要准确的计算方法来弥合此差距。在这里,我们提出了一个新的图形多任务深度学习模型,以识别具有目标抑制性和细胞活性(matic)特性的化合物。在经过精心策划的SARS-COV-2数据集中,提出的Matic模型显示了与传统方法相比,在筛选体内有效化合物方面的优点。接下来,我们探索了模型的解释性,发现目标抑制(体外)或细胞活性(体内)任务的学习特征与分子属性相关性和原子功能专注不同。基于这些发现,我们利用了基于蒙特卡洛的增强性学习生成模型来生成具有体外和体内功效的新型多毛皮化合物,从而弥合了基于靶基于靶基于靶标的药物和基于细胞的药物发现之间的差距。
translated by 谷歌翻译
There is increasing adoption of artificial intelligence in drug discovery. However, existing works use machine learning to mainly utilize the chemical structures of molecules yet ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions, and predict complex biological activities. We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecule's chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct the largest multi-modal dataset to date, namely PubChemSTM, with over 280K chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM possesses two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
translated by 谷歌翻译
预计个性化医学预计最大化预期的药物效应并通过基于其遗传谱治疗患者最小化副作用。因此,重要的是基于疾病的遗传谱产生药物,特别是在抗癌药物发现中。然而,这是具有挑战性的,因为巨大的化学空间和癌症特性的变化需要巨大的时间资源来寻找适当的分子。因此,考虑遗传型材的高效和快速的搜索方法是抗癌药物的Novo分子设计所必需的。在这里,我们提出了一种更快的分子生成模型,具有遗传算法和树搜索癌症样本(FeStergts)。 FERSTERGTS以遗传算法和具有三个深神经网络的蒙特卡罗树搜索构建:监督学习,自培训和价值网络,并且它基于癌症样品的遗传谱产生抗癌分子。与其他方法相比,FERSTERGTS产生癌症样品特异性分子,癌症药物在有限数量的采样中所需的一般化学性质。我们预计Fastergts促成了抗癌药物。
translated by 谷歌翻译
In molecular research, simulation \& design of molecules are key areas with significant implications for drug development, material science, and other fields. Current classical computational power falls inadequate to simulate any more than small molecules, let alone protein chains on hundreds of peptide. Therefore these experiment are done physically in wet-lab, but it takes a lot of time \& not possible to examine every molecule due to the size of the search area, tens of billions of dollars are spent every year in these research experiments. Molecule simulation \& design has lately advanced significantly by machine learning models, A fresh perspective on the issue of chemical synthesis is provided by deep generative models for graph-structured data. By optimising differentiable models that produce molecular graphs directly, it is feasible to avoid costly search techniques in the discrete and huge space of chemical structures. But these models also suffer from computational limitations when dimensions become huge and consume huge amount of resources. Quantum Generative machine learning in recent years have shown some empirical results promising significant advantages over classical counterparts.
translated by 谷歌翻译
基于结构的药物设计涉及发现具有对蛋白质袋的结构和化学互补性的配体分子。深度生成方法表明了在提出从划痕(De-Novo设计)的新型分子中的承诺,避免了化学空间的详尽虚拟筛选。大多数生成的de-novo模型未能包含详细的配体 - 蛋白质相互作用和3D袋结构。我们提出了一种新的监督模型,在离散的分子空间中与3D姿势共同产生分子图。分子在口袋内部构建原子原子,由来自晶体数据的结构信息引导。我们使用对接基准进行评估我们的模型,并发现引导生成将预测的结合亲和力提高了8%,并在基线上通过10%的药物相似分数提高了预测的结合亲和力。此外,我们的模型提出了具有超过一些已知配体的结合分数的分子,这可能在未来的湿式实验室研究中有用。
translated by 谷歌翻译