Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, $\textit{e.g.}$, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules $\textit{de novo}$. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a $\textit{renaissance}$ in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead.
translated by 谷歌翻译
基于合并和处理对称信息的神经网络架构的几何深度学习(GDL)已经成为人工智能最近的范式。GDL在分子建模应用中具有特定的承诺,其中存在具有不同对称性和抽象水平的各种分子表示。本综述提供了分子GDL的结构化和协调概述,突出了其在药物发现,化学合成预测和量子化学中的应用。重点是学习的分子特征的相关性及其对成熟的分子描述符的互补性。本综述概述了当前的挑战和机会,并提出了用于分子科学GDL的未来的预测。
translated by 谷歌翻译
蛋白质RNA相互作用对各种细胞活性至关重要。已经开发出实验和计算技术来研究相互作用。由于先前数据库的限制,尤其是缺乏蛋白质结构数据,大多数现有的计算方法严重依赖于序列数据,只有一小部分使用结构信息。最近,alphafold彻底改变了整个蛋白质和生物领域。可预应学,在即将到来的年份,也将显着促进蛋白质-RNA相互作用预测。在这项工作中,我们对该字段进行了彻底的审查,调查绑定站点和绑定偏好预测问题,并覆盖常用的数据集,功能和模型。我们还指出了这一领域的潜在挑战和机遇。本调查总结了过去的RBP-RNA互动领域的发展,并预见到了alphafold时代未来的发展。
translated by 谷歌翻译
在三维分子结构上运行的计算方法有可能解决生物学和化学的重要问题。特别地,深度神经网络的重视,但它们在生物分子结构域中的广泛采用受到缺乏系统性能基准或统一工具包的限制,用于与分子数据相互作用。为了解决这个问题,我们呈现Atom3D,这是一个新颖的和现有的基准数据集的集合,跨越几个密钥的生物分子。我们为这些任务中的每一个实施多种三维分子学习方法,并表明它们始终如一地提高了基于单维和二维表示的方法的性能。结构的具体选择对于性能至关重要,具有涉及复杂几何形状的任务的三维卷积网络,在需要详细位置信息的系统中表现出良好的图形网络,以及最近开发的设备越多的网络显示出显着承诺。我们的结果表明,许多分子问题符合三维分子学习的增益,并且有可能改善许多仍然过分曝光的任务。为了降低进入并促进现场进一步发展的障碍,我们还提供了一套全面的DataSet处理,模型培训和在我们的开源ATOM3D Python包中的评估工具套件。所有数据集都可以从https://www.atom3d.ai下载。
translated by 谷歌翻译
Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, as well as a low number of new drugs that are approved each year. To solve these problems, new and innovate technologies are needed that make the drug discovery process of small-molecules more time and cost-efficient, and which allow to target previously undruggable target classes such as protein-protein interactions. Structure-based virtual screenings have become a leading contender in this context. In this review, we give an introduction to the foundations of structure-based virtual screenings, and survey their progress in the past few years. We outline key principles, recent success stories, new methods, available software, and promising future research directions. Virtual screenings have an enormous potential for the development of new small-molecule drugs, and are already starting to transform early-stage drug discovery.
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
与靶蛋白具有高结合亲和力的药物样分子的产生仍然是药物发现中的一项困难和资源密集型任务。现有的方法主要采用强化学习,马尔可夫采样或以高斯过程为指导的深层生成模型,在生成具有高结合亲和力的分子时,通过基于计算量的物理学方法计算出的高结合亲和力。我们提出了对分子(豪华轿车)的潜在构成主义,它通过类似于Inceptionism的技术显着加速了分子的产生。豪华轿车采用序列的两个神经网络采用变异自动编码器生成的潜在空间和性质预测,从而使基于梯度的分子特性更快地基于梯度的反相比。综合实验表明,豪华轿车在基准任务上具有竞争力,并且在产生具有高结合亲和力的类似药物的化合物的新任务上,其最先进的技术表现出了最先进的技术,可针对两个蛋白质靶标达到纳摩尔范围。我们通过对绝对结合能的基于更准确的基于分子动力学的计算来证实这些基于对接的结果,并表明我们生成的类似药物的化合物之一的预测$ k_d $(结合亲和力的量度)为$ 6 \ cdot 10^ {-14} $ m针对人类雌激素受体,远远超出了典型的早期药物候选物和大多数FDA批准的药物的亲和力。代码可从https://github.com/rose-stl-lab/limo获得。
translated by 谷歌翻译
Generating molecules that bind to specific proteins is an important but challenging task in drug discovery. Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one. However, in real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms. With such energy-based consideration, the modeling of probability should be based on joint distributions, rather than sequentially conditional ones. Thus, the unnatural sequentially auto-regressive modeling of molecule generation is likely to violate the physical rules, thus resulting in poor properties of the generated molecules. In this work, a generative diffusion model for molecular 3D structures based on target proteins as contextual constraints is established, at a full-atom level in a non-autoregressive way. Given a designated 3D protein binding site, our model learns the generative process that denoises both element types and 3D coordinates of an entire molecule, with an equivariant network. Experimentally, the proposed method shows competitive performance compared with prevailing works in terms of high affinity with proteins and appropriate molecule sizes as well as other drug properties such as drug-likeness of the generated molecules.
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
蛋白质 - 配体相互作用(PLIS)是生化研究的基础,其鉴定对于估计合理治疗设计的生物物理和生化特性至关重要。目前,这些特性的实验表征是最准确的方法,然而,这是非常耗时和劳动密集型的。在这种情况下已经开发了许多计算方法,但大多数现有PLI预测大量取决于2D蛋白质序列数据。在这里,我们提出了一种新颖的并行图形神经网络(GNN),以集成PLI预测的知识表示和推理,以便通过专家知识引导的深度学习,并通过3D结构数据通知。我们开发了两个不同的GNN架构,GNNF是采用不同特种的基础实现,以增强域名认识,而GNNP是一种新颖的实现,可以预测未经分子间相互作用的先验知识。综合评价证明,GNN可以成功地捕获配体和蛋白质3D结构之间的二元相互作用,对于GNNF的测试精度和0.958,用于预测蛋白质 - 配体络合物的活性。这些模型进一步适用于回归任务以预测实验结合亲和力,PIC50对于药物效力和功效至关重要。我们在实验亲和力上达到0.66和0.65的Pearson相关系数,分别在PIC50和GNNP上进行0.50和0.51,优于基于2D序列的模型。我们的方法可以作为可解释和解释的人工智能(AI)工具,用于预测活动,效力和铅候选的生物物理性质。为此,我们通过筛选大型复合库并将我们的预测与实验测量数据进行比较来展示GNNP对SARS-COV-2蛋白靶标的实用性。
translated by 谷歌翻译
DNA-Encoded Library (DEL) technology has enabled significant advances in hit identification by enabling efficient testing of combinatorially-generated molecular libraries. DEL screens measure protein binding affinity though sequencing reads of molecules tagged with unique DNA-barcodes that survive a series of selection experiments. Computational models have been deployed to learn the latent binding affinities that are correlated to the sequenced count data; however, this correlation is often obfuscated by various sources of noise introduced in its complicated data-generation process. In order to denoise DEL count data and screen for molecules with good binding affinity, computational models require the correct assumptions in their modeling structure to capture the correct signals underlying the data. Recent advances in DEL models have focused on probabilistic formulations of count data, but existing approaches have thus far been limited to only utilizing 2-D molecule-level representations. We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes. 3-D spatial information allows our model to learn over the actual binding modality rather than using only structured-based information of the ligand. We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores that are better correlated with experimental binding affinity measurements compared to prior works. Moreover, by learning over a collection of docked poses we demonstrate that our model, trained only on DEL data, implicitly learns to perform good docking pose selection without requiring external supervision from expensive-to-source protein crystal structures.
translated by 谷歌翻译
Geometric deep learning has recently achieved great success in non-Euclidean domains, and learning on 3D structures of large biomolecules is emerging as a distinct research area. However, its efficacy is largely constrained due to the limited quantity of structural data. Meanwhile, protein language models trained on substantial 1D sequences have shown burgeoning capabilities with scale in a broad range of applications. Nevertheless, no preceding studies consider combining these different protein modalities to promote the representation power of geometric neural networks. To address this gap, we make the foremost step to integrate the knowledge learned by well-trained protein language models into several state-of-the-art geometric networks. Experiments are evaluated on a variety of protein representation learning benchmarks, including protein-protein interface prediction, model quality assessment, protein-protein rigid-body docking, and binding affinity prediction, leading to an overall improvement of 20% over baselines and the new state-of-the-art performance. Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin and can be generalized to complex tasks.
translated by 谷歌翻译
虽然最近在许多科学领域都变得无处不在,但对其评估的关注较少。对于分子生成模型,最先进的是孤立或与其输入有关的输出。但是,它们的生物学和功能特性(例如配体 - 靶标相互作用)尚未得到解决。在这项研究中,提出了一种新型的生物学启发的基准,用于评估分子生成模型。具体而言,设计了三个不同的参考数据集,并引入了与药物发现过程直接相关的一组指标。特别是我们提出了一个娱乐指标,将药物目标亲和力预测和分子对接应用作为评估生成产量的互补技术。虽然所有三个指标均在测试的生成模型中均表现出一致的结果,但对药物目标亲和力结合和分子对接分数进行了更详细的比较,表明单峰预测器可能会导致关于目标结合在分子水平和多模式方法的错误结论,而多模式的方法是错误的结论。因此优选。该框架的关键优点是,它通过明确关注配体 - 靶标相互作用,将先前的物理化学域知识纳入基准测试过程,从而创建了一种高效的工具,不仅用于评估分子生成型输出,而且还用于丰富富含分子生成的输出。一般而言,药物发现过程。
translated by 谷歌翻译
准确的蛋白质结合亲和力预测在药物设计和许多其他分子识别问题中至关重要。尽管基于机器学习技术的亲和力预测取得了许多进步,但由于蛋白质 - 配体结合取决于原子和分子的动力学,它们仍然受到限制。为此,我们策划了一个包含3,218个动态蛋白质配合物的MD数据集,并进一步开发了DynaFormer,这是一个基于图的深度学习框架。 DynaFormer可以通过考虑相互作用的各种几何特征来完全捕获动态结合规则。我们的方法显示出优于迄今报告的方法。此外,我们通过将模型与基于结构的对接整合在一起,对热休克蛋白90(HSP90)进行了虚拟筛选。我们对其他基线进行了基准测试,表明我们的方法可以鉴定具有最高实验效力的分子。我们预计大规模的MD数据集和机器学习模型将形成新的协同作用,为加速药物发现和优化提供新的途径。
translated by 谷歌翻译
在药物发现中,具有所需生物活性的新分子的合理设计是一项至关重要但具有挑战性的任务,尤其是在治疗新的靶家庭或研究靶标时。在这里,我们提出了PGMG,这是一种用于生物活化分子产生的药效团的深度学习方法。PGMG通过药理的指导提供了一种灵活的策略,以使用训练有素的变异自动编码器在各种情况下生成具有结构多样性的生物活性分子。我们表明,PGMG可以在给定药效团模型的情况下生成匹配的分子,同时保持高度的有效性,独特性和新颖性。在案例研究中,我们证明了PGMG在基于配体和基于结构的药物从头设计以及铅优化方案中生成生物活性分子的应用。总体而言,PGMG的灵活性和有效性使其成为加速药物发现过程的有用工具。
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
预测药物目标相互作用是药物发现的关键。最近基于深度学习的方法显示出令人鼓舞的表现,但仍有两个挑战:(i)如何明确建模并学习药物与目标之间的局部互动,以更好地预测和解释; (ii)如何从不同分布的新型药物目标对上概括预测性能。在这项工作中,我们提出了Dugban,这是一个深层双线性注意网络(BAN)框架,并适应了域的适应性,以明确学习药物与目标之间的配对局部相互作用,并适应了分布数据外的数据。 Dugban在药物分子图和靶蛋白序列上进行预测的作品,有条件结构域对抗性学习,以使跨不同分布的学习相互作用表示,以更好地对新型药物目标对进行更好的概括。在内域和跨域设置下,在三个基准数据集上进行的实验表明,对于五个最先进的基准,Dugban取得了最佳的总体表现。此外,可视化学习的双线性注意图图提供了可解释的见解,从预测结果中提供了可解释的见解。
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译
抗癌药物的发现是偶然的,我们试图介绍开放的分子图学习基准,称为Cantidrug4cancer,这是一个具有挑战性且逼真的基准数据集,可促进可扩展,健壮和可重复的图形机器学习用于抗癌药物发现的机器学习研究。候选物4CANCER数据集涵盖了多个最多的癌症靶标,涵盖了54869个与癌症相关的药物分子,其范围从临床前,临床和FDA批准的范围内。除了构建数据集外,我们还使用描述符和表达性图神经网络进行了有效的药物靶点相互作用(DTI)预测基准的基准实验。实验结果表明,候选物4Cancer在实际应用中对学习分子图和目标提出了重大挑战,这表明将来有机会开发用于治疗癌症的候选药物的研究。
translated by 谷歌翻译
最近,基于深度神经网络(DNN)的药物 - 目标相互作用(DTI)模型以高精度突出显示,具有实惠的计算成本。然而,模型在硅药物发现的实践中仍然是一个具有挑战性的问题。我们提出了两项​​关键策略,以提高DTI模型的概括。首先是通过用神经网络参数化的物理通知方程来预测原子原子对相互作用,并提供蛋白质 - 配体复合物作为其总和的总结合亲和力。通过增强更广泛的绑定姿势和配体来培训数据,我们进一步改善了模型泛化。我们验证了我们的模型,PIGNET,在评分职能(CASF)2016的比较评估中,展示了比以前的方法更优于对接和筛选力。我们的物理信息策略还通过可视化配体副结构的贡献来解释预测的亲和力,为进一步配体优化提供了见解。
translated by 谷歌翻译