映射人员动态是一项至关重要的技能,因为它使机器人能够在人居住的环境中共存。但是,学习人动态模型是一个耗时的过程,需要观察大量在环境中移动的人。此外,映射动力学的方法无法跨环境传输学习的模型:每个模型只能描述其所内置的环境的动力学。但是,可以使用建筑几何形状对人运动的影响来估计其动态,最近的工作旨在从几何学学习动态图。但是,到目前为止,这些方法仅在小型合成数据上评估了它们的性能,从而使这些方法的实际能力概括为实际条件,但未探索。在这项工作中,我们提出了一种新颖的方法,可以从几何学中学习人的动态,在大规模环境中,对模型进行了训练和评估。然后,我们展示了我们的方法概括到看不见的环境的能力,这对于动态图是前所未有的。
translated by 谷歌翻译
这项工作提出了一个非参数时空模型,用于在长期背景下通过移动自主机器人绘制人类活动。基于变异性高斯过程回归,该模型结合了先前的空间和时间周期性依赖性信息,以创建人类事件的连续表示。由机器人运动产生的不均匀数据分布通过异源性可能性函数包括在模型中,可以作为预测性不确定性。使用稀疏的公式,可以在数周内进行数据集,并且可以将数百平方米用于模型创建。基于多周数据集的实验评估表明,所提出的方法在预测质量和随后的路径计划方面都超过了艺术的表现。
translated by 谷歌翻译
Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets . We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.
translated by 谷歌翻译
在人群情景中,根据许多外部因素,预测行人的轨迹是一个复杂和具有挑战性的任务。场景的拓扑和行人之间的相互作用只是其中一些。由于数据 - 科学和数据收集技术的进步,深入学习方法最近成为众多域中的研究热点。因此,越来越多的研究人员对预测行人的轨迹应用这些方法并不令人惊讶。本文将这些相对较新的深度学习算法与基于经典知识的模型进行了比较,这些算法被广泛用于模拟行人动态。它为两种方法提供了全面的文献综述,探索了技术和应用面向差异,并解决了未来的问题以及未来的发展方向。我们的调查指出,由于深度学习算法的高准确性,现在,基于知识的模型来预测局部轨迹的内容是可疑的。然而,深度学习算法用于大规模模拟的能力和集体动态的描述仍有待证明。此外,比较表明,两种方法(混合方法)的组合似乎很有希望克服像深度学习方法的缺失解释性等缺点。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,经过训练,可以预测SOGM的未来时间步骤,并给定3D激光镜框架作为输入。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可预测SOGM表示中嵌入的未来信息,从而有可能捕获房地产的复杂性和不确定性世界多代理,多未来的互动。我们还设计了一个导航系统,该导航系统在计划中使用这些预测的SOGM在计划中,之后它们已转变为时空风险图(SRMS)。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。
translated by 谷歌翻译
当代机器人主义者的主要目标之一是使智能移动机器人能够在共享的人类机器人环境中平稳运行。为此目标服务的最基本必要的功能之一是在这种“社会”背景下有效的导航。结果,最近的一般社会导航的研究激增,尤其是如何处理社会导航代理之间的冲突。这些贡献介绍了各种模型,算法和评估指标,但是由于该研究领域本质上是跨学科的,因此许多相关论文是不可比较的,并且没有共同的标准词汇。这项调查的主要目标是通过引入这种通用语言,使用它来调查现有工作并突出开放问题来弥合这一差距。它首先定义社会导航的冲突,并提供其组成部分的详细分类学。然后,这项调查将现有工作映射到了本分类法中,同时使用其框架讨论论文。最后,本文提出了一些未来的研究方向和开放问题,这些方向目前正在社会导航的边界,以帮助集中于正在进行的和未来的研究。
translated by 谷歌翻译
自治车辆必须推理城市环境中的空间闭塞,以确保安全性而不会过于谨慎。前工作探索了观察到的道路代理人的社会行为的闭塞推动,因此将人们视为传感器。从代理行为推断出占用是一种固有的多模式问题;驾驶员可以同样地表现出与它们之前的不同占用模式类似(例如,驾驶员可以以恒定速度或在开放的道路上移动)。然而,过去的工作不考虑这种多层性,从而忽略了在驾驶员行为及其环境之间的关系中模拟了这种梯级不确定性的来源。我们提出了一种遮挡推理方法,其特征是观察人员的行为作为传感器测量,并将它们与标准传感器套件的熔断器融合。为了捕获炼泥的不确定性,我们用离散的潜在空间训练一个条件变形AutoEncoder,以学习从观察到的驾驶员轨迹到驾驶员前方视图的占用网格表示的多模式映射。我们的方法处理多代理场景,使用证据理论将来自多个观察到的驱动因素的测量结果组合以解决传感器融合问题。我们的方法在真实的数据集中验证,表现出基线,并展示实时能力的性能。我们的代码可在https://github.com/sisl/multiagentvarizingalocclusionInferience获得。
translated by 谷歌翻译
本文报告了一个动态语义映射框架,该框架将3D场景流量测量纳入封闭形式的贝叶斯推理模型中。环境中动态对象的存在可能会导致当前映射算法中的伪影和痕迹,从而导致后方地图不一致。我们利用深度学习利用最新的语义细分和3D流量估计,以提供MAP推断的测量。我们开发了一个贝叶斯模型,该模型以流量传播,并渗透3D连续(即可以在任意分辨率下查询)语义占用率图优于其静态对应物的语义占用图。使用公开数据集的广泛实验表明,所提出的框架对其前身和深度神经网络的输入测量有所改善。
translated by 谷歌翻译
尽管在移动机器人技术中常用的2D占用图可以在室内环境中进行安全导航,但为了让机器人理解和与其环境互动及其代表3D几何和语义环境信息的居民。语义信息对于有效解释人类归因于空间不同部分的含义至关重要,而3D几何形状对于安全性和高级理解很重要。我们提出了一条管道,该管道可以生成用于机器人应用的室内环境的多层表示。提出的表示形式包括3D度量语义层,2D占用层和对象实例层,其中已知对象被通过新型模型匹配方法获得的近似模型代替。将度量层和对象实例层组合在一起以形成对环境的增强表示形式。实验表明,当任务完成场景中对象的一部分时,提出的形状匹配方法优于最先进的深度学习方法。如F1得分分析所示,管道性能从模拟到现实世界都很好,使用蒙版R-CNN作为主要瓶颈具有语义分割精度。最后,我们还在真正的机器人平台上演示了多层地图如何用于提高导航安全性。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
尽管腿部机器人运动取得了进展,但在未知环境中的自主导航仍然是一个空旷的问题。理想情况下,导航系统在不确定性下在安全限制内运行时,利用机器人的运动功能的全部潜力。机器人必须感知和分析周围地形的遍历性,这取决于硬件,运动控制和地形特性。它可能包含有关穿越地形所需的风险,能量或时间消耗的信息。为了避免手工制作的遍历成本功能,我们建议通过使用物理模拟器在随机生成的地形上模拟遍历的遍历策略,以收集有关机器人和运动策略的遍历性信息。在现实中使用的相同的运动策略并行控制了数千个机器人,以获得57年的现实运动体验。对于在Real机器人上的部署,培训了一个稀疏的卷积网络,以预测模拟的遍历性成本,该成本是根据已部署的运动策略量身定制的,它是从环境的完全几何表示,以3D素体占用图的形式。该表示避免了对常用的高程图的需求,在存在悬垂障碍物以及多层或低天花板方案的情况下,这些图形图很容易出错。在各种室内和自然环境中,为腿部机器人Anymal的路径计划证明了拟议的遍历性预测网络的有效性。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
预测环境的未来占用状态对于实现自动驾驶汽车的明智决定很重要。占用预测中的常见挑战包括消失的动态对象和模糊的预测,尤其是对于长期预测范围。在这项工作中,我们提出了一个双独沟的神经网络体系结构,以预测占用状态的时空演化。一个插脚致力于预测移动的自我车辆将如何观察到静态环境。另一个插脚预测环境中的动态对象将如何移动。在现实Waymo开放数据集上进行的实验表明,两个插脚的融合输出能够保留动态对象并减少预测中比基线模型更长的预测时间范围。
translated by 谷歌翻译
在本文中,我们为全向机器人提供了一种积极的视觉血液。目标是生成允许这样的机器人同时定向机器人的控制命令并将未知环境映射到最大化的信息量和消耗尽可能低的信息。利用机器人的独立翻译和旋转控制,我们引入了一种用于活动V-SLAM的多层方法。顶层决定提供信息丰富的目标位置,并为它们产生高度信息的路径。第二个和第三层积极地重新计划并执行路径,利用连续更新的地图和本地特征信息。此外,我们介绍了两个实用程序配方,以解释视野和机器人位置的障碍物。通过严格的模拟,真正的机器人实验和与最先进的方法的比较,我们证明我们的方法通过较小的整体地图熵实现了类似的覆盖结果。这是可以获得的,同时保持横向距离比其他方法短至39%,而不增加车轮的总旋转量。代码和实现详细信息作为开源提供。
translated by 谷歌翻译
这项工作通过建立最近提出的轨迹排名最大的熵深逆增强学习(T-Medirl),为拥挤的环境中具有社会意识的本地规划师的新框架提出了一个新的框架。为了解决社会导航问题,我们的多模式学习计划者明确考虑了社会互动因素以及社会意识因素,以从T-Medirl Pipeline中学习,以从人类的示范中学习奖励功能。此外,我们建议使用机器人周围行人的突然速度变化来解决人类示范中的亚临时性。我们的评估表明,这种方法可以成功地使机器人在拥挤的社交环境中导航,并在成功率,导航时间和入侵率方面胜过最先进的社会导航方法。
translated by 谷歌翻译
近年来,人类运动轨迹预测是许多领域自治系统的重要任务。通过不同社区提出的多种新方法,缺乏标准化的基准和客观比较越来越成为评估进度并指导进一步研究的主要局限性。现有基准的范围和灵活性有限,无法进行相关实验,并说明了代理和环境的上下文提示。在本文中,我们提出了地图集,这是一个系统地评估人类运动轨迹预测算法的基准。 Atlas提供数据预处理功能,超参数优化,具有流行的数据集,并具有灵活性,可以进行设置和进行不充分的相关实验,以分析方法的准确性和鲁棒性。在ATLAS的示例应用中,我们比较了五个流行的模型和基于学习的预测指标,并发现,如果适当应用,基于物理的早期方法仍然具有竞争力。这样的结果证实了像Atlas这样的基准的必要性。
translated by 谷歌翻译
Sociability is essential for modern robots to increase their acceptability in human environments. Traditional techniques use manually engineered utility functions inspired by observing pedestrian behaviors to achieve social navigation. However, social aspects of navigation are diverse, changing across different types of environments, societies, and population densities, making it unrealistic to use hand-crafted techniques in each domain. This paper presents a data-driven navigation architecture that uses state-of-the-art neural architectures, namely Conditional Neural Processes, to learn global and local controllers of the mobile robot from observations. Additionally, we leverage a state-of-the-art, deep prediction mechanism to detect situations not similar to the trained ones, where reactive controllers step in to ensure safe navigation. Our results demonstrate that the proposed framework can successfully carry out navigation tasks regarding social norms in the data. Further, we showed that our system produces fewer personal-zone violations, causing less discomfort.
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译