尽管在移动机器人技术中常用的2D占用图可以在室内环境中进行安全导航,但为了让机器人理解和与其环境互动及其代表3D几何和语义环境信息的居民。语义信息对于有效解释人类归因于空间不同部分的含义至关重要,而3D几何形状对于安全性和高级理解很重要。我们提出了一条管道,该管道可以生成用于机器人应用的室内环境的多层表示。提出的表示形式包括3D度量语义层,2D占用层和对象实例层,其中已知对象被通过新型模型匹配方法获得的近似模型代替。将度量层和对象实例层组合在一起以形成对环境的增强表示形式。实验表明,当任务完成场景中对象的一部分时,提出的形状匹配方法优于最先进的深度学习方法。如F1得分分析所示,管道性能从模拟到现实世界都很好,使用蒙版R-CNN作为主要瓶颈具有语义分割精度。最后,我们还在真正的机器人平台上演示了多层地图如何用于提高导航安全性。
translated by 谷歌翻译
视觉同时定位和映射(VSLAM)在计算机视觉和机器人社区中取得了巨大进展,并已成功用于许多领域,例如自主机器人导航和AR/VR。但是,VSLAM无法在动态和复杂的环境中实现良好的定位。许多出版物报告说,通过与VSLAM结合语义信息,语义VSLAM系统具有近年来解决上述问题的能力。然而,尚无关于语义VSLAM的全面调查。为了填补空白,本文首先回顾了语义VSLAM的发展,并明确着眼于其优势和差异。其次,我们探讨了语义VSLAM的三个主要问题:语义信息的提取和关联,语义信息的应用以及语义VSLAM的优势。然后,我们收集和分析已广泛用于语义VSLAM系统的当前最新SLAM数据集。最后,我们讨论未来的方向,该方向将为语义VSLAM的未来发展提供蓝图。
translated by 谷歌翻译
保持最新的地图以反映现场的最新变化非常重要,尤其是在涉及在延长环境中操作的机器人重复遍历的情况。未发现的变化可能会导致地图质量恶化,导致本地化差,操作效率低下和机器人丢失。体积方法,例如截断的签名距离功能(TSDF),由于其实时生产致密而详细的地图,尽管在随着时间的推移随着时间的流逝而变化的地图更新仍然是一个挑战,但由于它们的实时生产而迅速获得了吸引力。我们提出了一个框架,该框架引入了一种新颖的概率对象状态表示,以跟踪对象在半静态场景中的姿势变化。该表示为每个对象共同对平稳性评分和TSDF变更度量进行建模。同时加入几何信息和语义信息的贝叶斯更新规则被得出以实现一致的在线地图维护。为了与最先进的方法一起广泛评估我们的方法,我们在仓库环境中发布了一个新颖的现实数据集。我们还评估了公共Toycar数据集。我们的方法优于半静态环境重建质量的最先进方法。
translated by 谷歌翻译
本文报告了一个动态语义映射框架,该框架将3D场景流量测量纳入封闭形式的贝叶斯推理模型中。环境中动态对象的存在可能会导致当前映射算法中的伪影和痕迹,从而导致后方地图不一致。我们利用深度学习利用最新的语义细分和3D流量估计,以提供MAP推断的测量。我们开发了一个贝叶斯模型,该模型以流量传播,并渗透3D连续(即可以在任意分辨率下查询)语义占用率图优于其静态对应物的语义占用图。使用公开数据集的广泛实验表明,所提出的框架对其前身和深度神经网络的输入测量有所改善。
translated by 谷歌翻译
同时本地化和映射(SLAM)是自动移动机器人中的基本问题之一,在该机器人需要重建以前看不见的环境的同时,同时在地图上进行了本身。特别是,Visual-Slam使用移动机器人中的各种传感器来收集和感测地图的表示。传统上,基于几何模型的技术被用来解决大满贯问题,在充满挑战的环境下,该问题往往容易出错。诸如深度学习技术之类的计算机视觉方面的最新进展提供了一种数据驱动的方法来解决视觉范围问题。这篇综述总结了使用各种基于学习的方法的视觉 - 峰领域的最新进展。我们首先提供了基于几何模型的方法的简洁概述,然后进行有关SLAM当前范式的技术评论。然后,我们介绍了从移动机器人那里收集感官输入并执行场景理解的各种基于学习的方法。讨论并将基于深度学习的语义理解中的当前范式讨论并置于视觉峰的背景下。最后,我们讨论了在视觉 - 峰中基于学习的方法方向上的挑战和进一步的机会。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
我们提出了一种基于学习的方法,以通过穿越城市环境的移动机器人来重建当地地形进行机车。使用板载摄像头和机器人轨迹的深度测量流,该算法估计机器人附近的地形。这些相机的原始测量值嘈杂,仅提供部分和遮挡的观察结果,在许多情况下,这些观察结果并未显示机器人所占据的地形。因此,我们提出了一个3D重建模型,该模型忠实地重建了场景,尽管嘈杂的测量和大量丢失的数据来自相机布置的盲点。该模型由点云上的4D完全卷积网络组成,该网络学习了几何先验,以从上下文中完成场景和自动回归反馈,以利用时空的一致性并使用过去的证据。该网络只能通过合成数据对网络进行训练,并且由于广泛的增强,它在现实世界中是强大的,如四足机器人(Anymal)验证中所示,Anymal,遍历具有挑战性的设置。我们使用有效的稀疏张量实现在机器人的机载低功率计算机上运行管道,并表明所提出的方法的表现优于经典地图表示。
translated by 谷歌翻译
3D场景图最近已成为3D环境的强大高级表示。一个3D场景图将环境描述为一个分层图,其中节点在多个级别的抽象和边缘表示概念之间的关系。尽管3D场景图可以用作机器人的高级“心理模型”,但如何实时建立如此丰富的代表仍然是未知的领域。本文描述了一个实时空间感知系统,这是一套算法,可实时从传感器数据构建3D场景图。我们的第一个贡献是开发实时算法,以在机器人探索环境时逐步构建场景图的层。这些算法在当前机器人位置构建了本地欧几里得签名的距离功能(ESDF),从ESDF中提取位置的拓扑图,然后使用受社区检测技术启发的方法将其分为房间。我们的第二个贡献是研究3D场景图中的循环闭合检测和优化。我们表明,3D场景图允许定义层次描述符以进行循环闭合检测;我们的描述符捕获场景图中跨层的统计信息,从低级视觉外观到有关对象和位置的摘要统计信息。然后,我们提出了第一种算法来优化3D场景图,以响应循环封闭。我们的方法依靠嵌入式变形图同时校正场景图的所有层。我们将提出的空间感知系统实施到一个名为Hydra的体系结构中,该体系结合了快速的早期和中级感知过程与较慢的高级感知。我们在模拟和真实数据上评估了Hydra,并证明它能够以与批处理离线方法相当的准确性重建3D场景图,尽管在线运行。
translated by 谷歌翻译
Conventional sensor-based localization relies on high-precision maps, which are generally built using specialized mapping techniques involving high labor and computational costs. In the architectural, engineering and construction industry, Building Information Models (BIM) are available and can provide informative descriptions of environments. This paper explores an effective way to localize a mobile 3D LiDAR sensor on BIM-generated maps considering both geometric and semantic properties. First, original BIM elements are converted to semantically augmented point cloud maps using categories and locations. After that, a coarse-to-fine semantic localization is performed to align laser points to the map based on iterative closest point registration. The experimental results show that the semantic localization can track the pose successfully with only one LiDAR sensor, thus demonstrating the feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help reduce localization errors on BIM-generated maps.
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
我们提出了一种新颖的方法,以基于在线RGBD重建与语义分割的在线RGBD重建,提出了一种对未知的室内场景的机器人工作的主动理解。在我们的方法中,探索机器人扫描是由场景中语义对象的识别和分割的驱动和定位。我们的算法基于体积深度融合框架(例如,KinectFusion)之上,并在在线重建卷上执行实时Voxel的语义标记。机器人通过在2D位置和方位角旋转的3D空间上参数化的在线估计的离散观看截由场(VSF)。 VSF为每个网格存储相应视图的分数,测量它减少了几何重建和语义标记的不确定性(熵)。基于VSF,我们选择每个时间步骤的下一个最佳视图(NBV)作为目标。然后,我们通过沿路径和轨迹最大化积分观看分数(信息增益)来共同优化遍历两个相邻的NBV之间的横向路径和相机轨迹。通过广泛的评估,我们表明我们的方法在探索性扫描期间实现了高效准确的在线场景解析。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
在本文中,我们提出了一个新颖的对象级映射系统,该系统可以同时在动态场景中分段,跟踪和重建对象。它可以通过对深度输入的重建和类别级别的重建来进一步预测并完成其完整的几何形状,其目的是完成对象几何形状会导致更好的对象重建和跟踪准确性。对于每个传入的RGB-D帧,我们执行实例分割以检测对象并在检测和现有对象图之间构建数据关联。将为每个无与伦比的检测创建一个新的对象映射。对于每个匹配的对象,我们使用几何残差和差分渲染残留物共同优化其姿势和潜在的几何表示形式,并完成其形状之前和完成的几何形状。与使用传统的体积映射或学习形状的先验方法相比,我们的方法显示出更好的跟踪和重建性能。我们通过定量和定性测试合成和现实世界序列来评估其有效性。
translated by 谷歌翻译
对未知环境的探索是机器人技术中的一个基本问题,也是自治系统应用中的重要组成部分。探索未知环境的一个主要挑战是,机器人必须计划每个时间步骤可用的有限信息。尽管大多数当前的方法都依靠启发式方法和假设来根据这些部分观察来规划路径,但我们提出了一种新颖的方式,通过利用3D场景完成来将深度学习整合到探索中,以获取知情,安全,可解释的探索映射和计划。我们的方法,SC-explorer,使用新型的增量融合机制和新提出的分层多层映射方法结合了场景的完成,以确保机器人的安全性和效率。我们进一步提出了一种信息性的路径计划方法,利用了我们的映射方法的功能和新颖的场景完整感知信息增益。虽然我们的方法通常适用,但我们在微型航空车辆(MAV)的用例中进行了评估。我们仅使用移动硬件彻底研究了高保真仿真实验中的每个组件,并证明我们的方法可以使环境的覆盖范围增加73%,而不是基线,而MAP准确性的降低仅最少。即使最终地图中未包含场景的完成,我们也可以证明它们可以用于指导机器人选择更多信息的路径,从而加快机器人传感器的测量值35%。我们将我们的方法作为开源。
translated by 谷歌翻译
对环境变化进行推理的能力对于长时间运行的机器人至关重要。期望代理在操作过程中捕获变化,以便可以采取行动以确保工作会议的平稳进展。但是,由于低观测重叠和漂移对象关联,不同的视角和累积的本地化错误使机器人可以轻松地检测周围世界的变化。在本文中,基于最近提出的类别级神经描述符字段(NDFS),我们开发了一种对象级在线变更检测方法,该方法可用于部分重叠观测和嘈杂的本地化结果。利用形状的完成功能和NDF的SE(3) - 均衡性,我们表示具有紧凑形状代码的对象,从部分观测中编码完整的对象形状。然后,基于从NDF恢复的对象中心以快速查询对象社区的对象中心,将对象组织在空间树结构中。通过通过形状代码相似性与对象关联并比较局部对象 - 邻居空间布局,我们提出的方法证明了对低观察重叠和本地化噪声的鲁棒性。与多种基线方法相比,我们对合成和现实世界序列进行实验,并获得改进的变化检测结果。项目网页:https://yilundu.github.io/ndf_change
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,经过训练,可以预测SOGM的未来时间步骤,并给定3D激光镜框架作为输入。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可预测SOGM表示中嵌入的未来信息,从而有可能捕获房地产的复杂性和不确定性世界多代理,多未来的互动。我们还设计了一个导航系统,该导航系统在计划中使用这些预测的SOGM在计划中,之后它们已转变为时空风险图(SRMS)。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。
translated by 谷歌翻译