通过结合适当的参数规范的动态控制和基于参数规范的Rademacher复杂性估计,通过随机梯度下降训练的深神经网络(SGD)的深度神经网络的概括误差界限。界限明确取决于训练轨迹的损失,并为包括多层感知器(MLP)(MLP)和卷积神经网络(CNN)在内的广泛网络体系结构工作。与其他基于统一的稳定性界限(例如基于统一的范围)相比,我们的边界不需要$ l $ -smoothness nonConvex损耗函数,并直接应用于SGD而不是随机Langevin梯度下降(SGLD)。数值结果表明,我们的边界对优化器和网络超参数的变化是不变且健壮的。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
成对学习正在接受越来越多的关注,因为它涵盖了许多重要的机器学习任务,例如度量学习,AUC最大化和排名。研究成对学习的泛化行为是重要的。然而,现有的泛化分析主要侧重于凸面的目标函数,使非挖掘学习远远较少。此外,导出用于成对学习的泛化性能的当前学习速率主要是较慢的顺序。通过这些问题的动机,我们研究了非透露成对学习的泛化性能,并提供了改进的学习率。具体而言,我们基于其分析经验风险最小化器,梯度下降和随机梯度下降成对比对学习的不同假设,在不同假设下产生不同均匀的梯度梯度收敛。我们首先在一般的非核心环境中成功地为这些算法建立了学习率,在普通非核心环境中,分析揭示了优化和泛化之间的权衡的见解以及早期停止的作用。然后,我们调查非凸起学习的概括性表现,具有梯度优势曲率状态。在此设置中,我们推出了更快的订单$ \ mathcal {o}(1 / n)$的学习速率,其中$ n $是样本大小。如果最佳人口风险很小,我们进一步将学习率提高到$ \ mathcal {o}(1 / n ^ 2)$,这是我们的知识,是第一个$ \ mathcal {o}( 1 / n ^ 2)$ - 成对学习的速率类型,无论是凸面还是非渗透学习。总的来说,我们系统地分析了非凸显成对学习的泛化性能。
translated by 谷歌翻译
具有动量的随机梯度下降(SGD)被广泛用于训练现代深度学习体系结构。虽然可以很好地理解使用动量可以导致在各种环境中更快的收敛速率,但还观察到动量会产生更高的概括。先前的工作认为,动量在训练过程中稳定了SGD噪声,这会导致更高的概括。在本文中,我们采用了另一种观点,并首先在经验上表明,与梯度下降(GD)相比,具有动量(GD+M)的梯度下降在某些深度学习问题中显着改善了概括。从这个观察结果,我们正式研究了动量如何改善概括。我们设计了一个二进制分类设置,在该设置中,当两种算法都类似地初始化时,经过GD+M训练的单个隐藏层(过度参数化)卷积神经网络比使用GD训练的同一网络更好地概括了。我们分析中的关键见解是,动量在示例共享某些功能但边距不同的数据集中是有益的。与记住少量数据数据的GD相反,GD+M仍然通过其历史梯度来了解这些数据中的功能。最后,我们从经验上验证了我们的理论发现。
translated by 谷歌翻译
探讨了第一层神经网络中的参数和输入数据的乘法结构,以在丢失功能的景观与模型函数的景观与输入数据的景观之间建立连接。通过这种连接,示出了平坦的最小值规范了模型功能的梯度,这解释了扁平最小值的良好泛化性能。然后,我们超越平坦度并考虑梯度噪声的高阶矩,并且表明随机梯度下降(SGD)倾向于通过全球最小值的SGD的线性稳定性分析对这些瞬间施加约束。我们与乘法结构一起,我们识别SGD的SoboLev正则化效果,即SGD对输入数据的模型函数的SoboLev Semininorms进行了规范。最后,提供了在数据分布的假设下由SGD发现的解决方案的泛化误差和逆势鲁棒性的界限。
translated by 谷歌翻译
机器学习理论中的主要开放问题之一是表征过度参数化的政权中的概括,在该制度中,大多数传统的概括范围变得不一致。在许多情况下,它们的失败可以归因于掩盖训练算法与基础数据分布之间的关键相互作用。为了解决这一缺点,我们提出了一个名为兼容性的概念,该概念以与数据相关的和算法相关的方式定量地表征了概括。通过考虑整个训练轨迹并专注于早期迭代的迭代术,兼容性充分利用了算法信息,因此可以提供更好的概括保证。我们通过理论上研究与梯度下降过度参数化的线性回归设置的兼容性来验证这一点。具体而言,我们执行与数据相关的轨迹分析,并在这种设置下得出足够的兼容性条件。我们的理论结果表明,从兼容性的意义上讲,概括性对问题实例的限制明显弱,而不是上次迭代分析。
translated by 谷歌翻译
神经切线内核(NTK)已成为提供记忆,优化和泛化的强大工具,可保证深度神经网络。一项工作已经研究了NTK频谱的两层和深网,其中至少具有$ \ omega(n)$神经元的层,$ n $是培训样本的数量。此外,有越来越多的证据表明,只要参数数量超过样品数量,具有亚线性层宽度的深网是强大的记忆和优化器。因此,一个自然的开放问题是NTK是否在如此充满挑战的子线性设置中适应得很好。在本文中,我们以肯定的方式回答了这个问题。我们的主要技术贡献是对最小的深网的最小NTK特征值的下限,最小可能的过度参数化:参数的数量大约为$ \ omega(n)$,因此,神经元的数量仅为$ $ $ \ omega(\ sqrt {n})$。为了展示我们的NTK界限的适用性,我们为梯度下降训练提供了两个有关记忆能力和优化保证的结果。
translated by 谷歌翻译
We investigate the asymptotic properties of deep Residual networks (ResNets) as the number of layers increases. We first show the existence of scaling regimes for trained weights markedly different from those implicitly assumed in the neural ODE literature. We study the convergence of the hidden state dynamics in these scaling regimes, showing that one may obtain an ODE, a stochastic differential equation (SDE) or neither of these. In particular, our findings point to the existence of a diffusive regime in which the deep network limit is described by a class of stochastic differential equations (SDEs). Finally, we derive the corresponding scaling limits for the backpropagation dynamics.
translated by 谷歌翻译
现代神经网络通常具有很大的表现力,并且可以接受训练以使培训数据过高,同时仍能达到良好的测试性能。这种现象被称为“良性过度拟合”。最近,从理论角度出现了一系列研究“良性过度拟合”的作品。但是,它们仅限于线性模型或内核/随机特征模型,并且仍然缺乏关于何时以及如何在神经网络中发生过度拟合的理论理解。在本文中,我们研究了训练两层卷积神经网络(CNN)的良性过度拟合现象。我们表明,当信噪比满足一定条件时,通过梯度下降训练的两层CNN可以实现任意小的训练和测试损失。另一方面,当这种情况无法成立时,过度拟合就会有害,并且获得的CNN只能实现恒定的测试损失。这些共同证明了由信噪比驱动的良性过度拟合和有害过度拟合之间的急剧过渡。据我们所知,这是第一部精确地表征良性过度拟合在训练卷积神经网络中的条件的工作。
translated by 谷歌翻译
在机器学习通常与优化通过训练数据定义实证目标的最小化交易。然而,学习的最终目的是尽量减少对未来的数据错误(测试误差),为此,训练数据只提供部分信息。这种观点认为,是实际可行的优化问题是基于不准确的数量在本质上是随机的。在本文中,我们显示了如何概率的结果,特别是浓度梯度,可以用来自不精确优化结果来导出尖锐测试误差保证组合。通过考虑无约束的目标,我们强调优化隐含正规化性学习。
translated by 谷歌翻译
尽管他们的超大容量过度装备能力,但是由特定优化算法训练的深度神经网络倾向于概括到看不见的数据。最近,研究人员通过研究优化算法的隐式正则化效果来解释它。卓越的进展是工作(Lyu&Li,2019),其证明了梯度下降(GD)最大化了均匀深神经网络的余量。除GD外,诸如Adagrad,RMSProp和Adam之类的自适应算法由于其快速培训过程而流行。然而,仍然缺乏适应性优化算法的概括的理论保证。在本文中,我们研究了自适应优化算法的隐式正则化,当它们在均匀深神经网络上优化逻辑损失时。我们证明了在调节器(如亚当和RMSProp)中采用指数移动平均策略的自适应算法可以最大化神经网络的余量,而Adagrad直接在调节器中总和历史平方梯度。它表明了调节剂设计中指数移动平均策略的概括的优越性。从技术上讲,我们提供统一的框架,通过构建新的自适应梯度流量和代理余量来分析自适应优化算法的会聚方向。我们的实验可以很好地支持适应性优化算法的会聚方向的理论发现。
translated by 谷歌翻译
非凸优化的传统分析通常取决于平滑度的假设,即要求梯度为Lipschitz。但是,最近的证据表明,这种平滑度条件并未捕获一些深度学习目标功能的特性,包括涉及复发性神经网络和LSTM的函数。取而代之的是,他们满足了更轻松的状况,并具有潜在的无界光滑度。在这个轻松的假设下,从理论和经验上表明,倾斜的SGD比香草具有优势。在本文中,我们表明,在解决此类情况时,剪辑对于ADAM型算法是不可或缺的:从理论上讲,我们证明了广义标志GD算法可以获得与带有剪辑的SGD相似的收敛速率,但根本不需要显式剪辑。一端的这个算法家族恢复了符号,另一端与受欢迎的亚当算法非常相似。我们的分析强调了动量在分析符号类型和ADAM型算法中发挥作用的关键作用:它不仅降低了噪声的影响,因此在先前的符号分析中消除了大型迷你批次的需求显着降低了无界平滑度和梯度规范的影响。我们还将这些算法与流行的优化器进行了比较,在一组深度学习任务上,观察到我们可以在击败其他人的同时匹配亚当的性能。
translated by 谷歌翻译
Recent works have cast some light on the mystery of why deep nets fit any data and generalize despite being very overparametrized. This paper analyzes training and generalization for a simple 2-layer ReLU net with random initialization, and provides the following improvements over recent works: (i) Using a tighter characterization of training speed than recent papers, an explanation for why training a neural net with random labels leads to slower training, as originally observed in [Zhang et al. ICLR'17]. (ii) Generalization bound independent of network size, using a data-dependent complexity measure. Our measure distinguishes clearly between random labels and true labels on MNIST and CIFAR, as shown by experiments. Moreover, recent papers require sample complexity to increase (slowly) with the size, while our sample complexity is completely independent of the network size. (iii) Learnability of a broad class of smooth functions by 2-layer ReLU nets trained via gradient descent.The key idea is to track dynamics of training and generalization via properties of a related kernel.
translated by 谷歌翻译
梯度类型优化方法的证明算法依赖性的概括误差范围最近在学习理论中引起了极大的关注。但是,大多数现有的基于轨迹的分析需要对学习率(例如,快速降低学习率)或连续注​​入噪声(例如Langevin Dynamics中的高斯噪声)的限制性假设。在本文中,我们在PAC-Bayesian框架之前引入了一种新的离散数据依赖性,并证明了$ O(\ frac {1} {n} {n} {n} \ cdot \ sum_ {t = 1}^^的高概率概括限制t(\ gamma_t/\ varepsilon_t)^2 \ left \ | {\ mathbf {g} _t} _t} \ right \ |^2)for floored gd(即,梯度下降的版本具有精度下降级别$ \ varepsilon_t $) $ n $是培训样本的数量,$ \ gamma_t $是步骤$ t $,$ \ mathbf {g} _t $的学习率大致是使用所有样本计算的梯度差,并且仅使用先前的样本。 $ \ left \ | {\ mathbf {g} _t} \ right \ | $在上限和典型的范围比梯度范围norm norm $ \ left \ weft \ | {\ nabla f(w_t)} \ right \ right \ | $小得多。我们指出,我们的界限适用于非凸和非平滑场景。此外,我们的理论结果提供了测试错误的数值上限(例如,MNIST $ 0.037 $)。使用类似的技术,我们还可以为SGD的某些变体获得新的概括范围。此外,我们研究了梯度Langevin动力学(GLD)的概括界。使用同一框架与经过精心构造的先验构造的框架,我们显示了$ o(\ frac {1} {n} {n} + \ frac {l^2} {n^2} {n^2} \ sum_ {t = 1}^t(\ gamma_t/\ sigma_t)^2)$ for gld。新的$ 1/n^2 $费率是由于培训样本梯度和先验梯度之间的差异的浓度。
translated by 谷歌翻译
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a deep overparameterized neural network with residual connections (ResNet). Our analysis relies on the particular structure of the Gram matrix induced by the neural network architecture. This structure allows us to show the Gram matrix is stable throughout the training process and this stability implies the global optimality of the gradient descent algorithm. We further extend our analysis to deep residual convolutional neural networks and obtain a similar convergence result.
translated by 谷歌翻译
神经体系结构搜索(NAS)促进了神经体系结构的自动发现,从而实现了图像识别的最新精度。尽管NAS取得了进展,但到目前为止,NAS对理论保证几乎没有关注。在这项工作中,我们研究了NAS在统一框架下的概括属性,从而实现(深)层跳过连接搜索和激活功能搜索。为此,我们从搜索空间(包括混合的激活功能,完全连接和残留的神经网络)的(包括)有限宽度方向上得出了神经切线核的最小特征值的下(和上)边界。由于在统一框架下的各种体系结构和激活功能的耦合,我们的分析是不平凡的。然后,我们利用特征值边界在随机梯度下降训练中建立NAS的概括误差界。重要的是,我们从理论上和实验上展示了衍生结果如何指导NAS,即使在没有培训的情况下,即使在没有培训的情况下,也可以根据我们的理论进行无训练的算法。因此,我们的数值验证阐明了NAS计算有效方法的设计。
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
尽管已经取得了重大的理论进步,但揭示了过度参数化神经网络的概括之谜仍然难以捉摸。在本文中,我们通过利用算法稳定性的概念来研究浅神经网络(SNN)的概括行为。我们考虑梯度下降(GD)和随机梯度下降(SGD)来训练SNN,因为这两者都通过通过早期停止来平衡优化和概括来发展一致的多余风险范围。与现有的GD分析相比,我们的新分析需要放松的过度参数化假设,并且还适用于SGD。改进的关键是更好地估计经验风险的Hessian矩阵的最小特征值,以及通过提供对其迭代材料的精制估计,沿GD和SGD的轨迹沿GD和SGD的轨迹进行了更好的估计。
translated by 谷歌翻译
过度分辨率是指选择神经网络的宽度,使得学习算法可以在非凸训练中可被估计零损失的重要现象。现有理论建立了各种初始化策略,培训修改和宽度缩放等全局融合。特别地,最先进的结果要求宽度以二次逐步缩放,并在实践中使用的标准初始化策略下进行培训数据的数量,以获得最佳泛化性能。相比之下,最新的结果可以获得线性缩放,需要导致导致“懒惰训练”的初始化,或者仅训练单层。在这项工作中,我们提供了一个分析框架,使我们能够采用标准的初始化策略,可能避免懒惰的训练,并在基本浅色神经网络中同时培训所有层,同时获得网络宽度的理想子标缩放。我们通过Polyak-Lojasiewicz条件,平滑度和数据标准假设实现了Desiderata,并使用随机矩阵理论的工具。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译