在臂分布的标准假设下广泛研究了随机多臂强盗问题(例如,用已知的支持,指数家庭等)。这些假设适用于许多现实世界问题,但有时他们需要知识(例如,在尾部上),从业者可能无法精确访问,提高强盗算法的鲁棒性的问题,以模拟拼盘。在本文中,我们研究了一种通用的Dirichlet采样(DS)算法,基于通过重新采样的武器观测和数​​据相关的探索奖励计算的经验指标的成对比较。我们表明,当该策略的界限和对数后悔具有轻度分量度条件的半界分布时,这种策略的不同变体达到了可证明的最佳遗憾。我们还表明,一项简单的调整在大类无界分布方面实现了坚固性,其成本比对数渐近的遗憾略差。我们终于提供了数字实验,展示了合成农业数据的决策问题中DS的优点。
translated by 谷歌翻译
出现了前两种算法,作为汤普森采样对多臂匪徒模型中最佳手臂识别的适应(Russo,2016),用于武器的参数家族。他们通过在两个候选臂,一个领导者和一个挑战者中随机化来选择下一个要采样的臂。尽管具有良好的经验表现,但仅当手臂是具有已知差异的高斯时,才能获得固定信心最佳手臂识别的理论保证。在本文中,我们提供了对两种方法的一般分析,该方法确定了领导者,挑战者和武器(可能是非参数)分布的理想特性。结果,我们获得了理论上支持的前两种算法,用于具有有限分布的最佳臂识别。我们的证明方法特别证明了用于选择从汤普森采样继承的领导者的采样步骤可以用其他选择代替,例如选择经验最佳的臂。
translated by 谷歌翻译
我们考虑了一种有可能无限的武器的随机强盗问题。我们为最佳武器和$ \ delta $的比例写入$ p ^ * $,以获得最佳和次优臂之间的最小含义 - 均值差距。我们在累积遗憾设置中表征了最佳学习率,以及在问题参数$ t $(预算),$ p ^ * $和$ \ delta $的最佳臂识别环境中。为了最大限度地减少累积遗憾,我们提供了订单$ \ OMEGA(\ log(t)/(p ^ * \ delta))$的下限和UCB样式算法,其匹配上限为一个因子$ \ log(1 / \ delta)$。我们的算法需要$ p ^ * $来校准其参数,我们证明了这种知识是必要的,因为在这个设置中调整到$ p ^ * $以来,因此是不可能的。为了获得最佳武器识别,我们还提供了订单$ \ Omega(\ exp(-ct \ delta ^ 2 p ^))的较低限制,以上输出次优臂的概率,其中$ c> 0 $是一个绝对常数。我们还提供了一个消除算法,其上限匹配下限到指数中的订单$ \ log(t)$倍数,并且不需要$ p ^ * $或$ \ delta $ as参数。我们的结果直接适用于竞争$ j $ -th最佳手臂的三个相关问题,识别$ \ epsilon $良好的手臂,并找到一个平均值大于已知订单的大分的手臂。
translated by 谷歌翻译
我们考虑$ k $武装的随机土匪,并考虑到$ t $ t $的累积后悔界限。我们对同时获得最佳订单$ \ sqrt {kt} $的策略感兴趣,并与发行依赖的遗憾相关,即与$ \ kappa \ ln t $相匹配,该遗憾是最佳的。和Robbins(1985)以及Burnetas和Katehakis(1996),其中$ \ kappa $是最佳问题依赖性常数。这个常数的$ \ kappa $取决于所考虑的模型$ \ Mathcal {d} $(武器上可能的分布家族)。 M \'Enard and Garivier(2017)提供了在一维指数式家庭给出的模型的参数案例中实现这种双重偏见的策略,而Lattimore(2016,2018)为(Sub)高斯分布的家族而做到了这一点。差异小于$ 1 $。我们将此结果扩展到超过$ [0,1] $的所有分布的非参数案例。我们通过结合Audibert和Bubeck(2009)的MOSS策略来做到这一点,该策略享受了最佳订单$ \ sqrt {kt} $的无分配遗憾,以及Capp \'e等人的KL-UCB策略。 (2013年),我们为此提供了对最佳分布$ \ kappa \ ln t $遗憾的首次分析。我们能够在努力简化证明(以前已知的遗憾界限,因此进行的新分析)时,能够获得这种非参数两次审查结果;因此,本贡献的第二个优点是为基于$ k $武装的随机土匪提供基于索引的策略的经典后悔界限的证明。
translated by 谷歌翻译
关于强盗算法最佳设计的许多文献都是基于最小化预期遗憾的基础。众所周知,在某些指数家庭中最佳的设计可以实现预期的遗憾,即以LAI-ROBBINS下降的速度在ARM游戏数量上进行对数增长。在本文中,我们表明,当人们使用这种优化的设计时,相关算法的遗憾分布必然具有非常沉重的尾巴,特别是cauchy分布的尾巴。此外,对于$ p> 1 $,遗憾分布的$ p $'瞬间增长速度要比多层型的速度快得多,尤其是作为ARM播放总数的力量。我们表明,优化的UCB强盗设计在另一种意义上也是脆弱的,即,当问题甚至略有指定时,遗憾的增长可能比传统理论所建议的要快得多。我们的论点是基于标准的量化想法,并表明最有可能的遗憾变得比预期的要大的方法是最佳手臂在前几只手臂比赛中返回低于平均水平的奖励,从而导致算法相信这一点手臂是最佳的。为了减轻暴露的脆弱性问题,我们表明可以修改UCB算法,以确保对错误指定的理想程度。在此过程中,我们还提供了UCB勘探数量与产生后悔分布的尾声之间的巨大权衡。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
本文统一了设计,简化了风险厌恶汤普森采样算法的分析,为多武装爆炸问题的常规风险功能为$ \ rho $。在大偏差理论中使用收缩原理,我们证明了这些连续风险功能的新型浓度界限。与现有的作品相比,所界限取决于样本本身,我们的范围仅取决于样本的数量。这使我们能够以追求的分析挑战,并统一现有汤普森采样的算法的遗憾范围。我们展示了广泛的风险功能以及它们的“漂亮”功能满足连续性条件。使用我们新开发的分析工具包,我们分析了算法$ \ rho $ -mts(对于多项式发行版)和$ \ rho $ -npts(对于有界分布),并证明他们承认渐近最佳的风险厌恶算法的最佳遗憾平均方差,CVAR等普遍存在风险措施,以及一系列新综合的风险措施。数值模拟表明,我们的界限是相当严格的VIS-\“A-VIS算法无关的下限。
translated by 谷歌翻译
我们重新审视混合技术的方法,也称为拉普拉斯法,以研究通用指数家族中的浓度现象。将与家族的对数分区功能相关的Bregman差异的性质与超级木制混合物的方法相关联,我们建立了一个通用的结合,以控制家族参数与参数的有限样本估算之间的Bregman差异。我们的界限是时间均匀的,并且看起来很大,将经典信息增益扩展到指数式家庭,我们称之为Bregman信息收益。对于从业者而言,我们实例化了这本小说绑定到几个古典家庭,例如高斯,伯努利,指数,威布尔,帕雷托,帕尔托,泊松和卡方和卡方,从而产生了置信度的明确形式和布雷格曼信息的收益。我们从数值上进一步将所得的置信度界限与最先进的替代方案进行比较,以使其均匀浓度,并表明这种新颖的方法会产生竞争结果。最后,我们强调了集中界对某些说明性应用的好处。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
我们提出了置信度序列 - 置信区间序列,其均匀地随时间均匀 - 用于基于I.I.D的流的完整,完全有序集中的任何分布的量级。观察。我们提供用于跟踪固定定量的方法并同时跟踪所有定量。具体而言,我们提供具有小常数的明确表达式,其宽度以尽可能快的$ \ SQRT {t} \ log \ log t} $率,以及实证分布函数的非渐近浓度不等式以相同的速率均匀地持续持续。后者加强了Smirnov迭代对数的实证过程法,延长了DVORETZKY-KIEFER-WOLFOITZ不等式以均匀地保持一段时间。我们提供了一种新的算法和样本复杂性,用于在多武装强盗框架中选择具有大约最佳定量的臂。在仿真中,我们的方法需要比现有方法更少五到五十的样品。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
我们在固定的误差率$ \ delta $(固定信道TOP-M识别)下最大的手段识别M武器的问题,用于错过的线性匪盗模型。这个问题是由实际应用的动机,特别是在医学和推荐系统中,由于它们的简单性和有效算法的存在,线性模型很受欢迎,但是数据不可避免地偏离线性。在这项工作中,我们首先在普通Top-M识别问题的任何$ \ delta $ -correct算法的样本复杂性上得出了一个易行的下限。我们表明,知道从线性度偏差的偏差是利用问题的结构所必需的。然后,我们描述了该设置的第一个算法,这既实际,也适应了误操作。我们从其样本复杂度推出了一个上限,证实了这种适应性,与$ \ delta $ $ \ lightarrow $ 0匹配。最后,我们在合成和现实世界数据上评估了我们的算法,表现出尊重的竞争性能到现有的基准。
translated by 谷歌翻译
本文提出了新的偏差不等式,其在多武装强盗模型中的自适应采样下均匀地均匀。使用给定的一维指数家庭中的kullback-leibler发散来测量偏差,并且可以一次考虑几个臂。它们是通过基于分层的每个臂鞅构造而构建的,并通过将那些鞅乘以来获得。我们的偏差不平等允许我们根据广义概率比来分析一大类连续识别问题的概要概率比,并且为臂的装置的某些功能构造紧密的置信区间。
translated by 谷歌翻译
我们为随机线性匪徒问题提出了一种新的基于自举的在线算法。关键的想法是采用残留的自举勘探,在该探索中,代理商通过重新采样平均奖励估算的残差来估算下一步奖励。我们的算法,随机线性匪徒(\ texttt {linreboot})的残留bootstrap探索,从其重新采样分布中估算了线性奖励,并以最高的奖励估计拉动了手臂。特别是,我们为理论框架做出了一个理论框架,以使基于自举的探索机制在随机线性匪徒问题中脱颖而出。关键见解是,Bootstrap探索的强度基于在线学习模型和残差的重新采样分布之间的乐观情绪。这样的观察使我们能够证明所提出的\ texttt {linreboot}确保了高概率$ \ tilde {o}(d \ sqrt {n})$ sub-linear在温和条件下的遗憾。我们的实验支持\ texttt {重新启动}原理在线性匪徒问题的各种公式中的简易概括性,并显示了\ texttt {linreboot}的显着计算效率。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
多臂强盗(MAB)问题是增强学习领域中广泛研究的模型。本文考虑了经典mAB模型的两个案例 - 灯塔奖励分布和重尾。对于轻尾(即次高斯)案件,我们提出了UCB1-LT政策,实现了遗憾增长命令的最佳$ O(\ log t)$。对于重尾案,我们介绍了扩展的强大UCB政策,这是Bubeck等人提出的UCB政策的扩展。(2013)和Lattimore(2017)。以前的UCB政策要求在奖励分布的特定时刻了解上限的知识,在某些实际情况下可能很难获得。我们扩展的强大UCB消除了这一要求,同时仍达到最佳的遗憾增长订单$ O(\ log t)$,从而为重型奖励分配提供了扩大的UCB政策应用程序领域。
translated by 谷歌翻译
我们考虑使用未知差异的双臂高斯匪徒的固定预算最佳臂识别问题。当差异未知时,性能保证与下限的性能保证匹配的算法最紧密的下限和算法的算法很长。当算法不可知到ARM的最佳比例算法。在本文中,我们提出了一种策略,该策略包括在估计的ARM绘制的目标分配概率之后具有随机采样(RS)的采样规则,并且使用增强的反概率加权(AIPW)估计器通常用于因果推断文学。我们将我们的战略称为RS-AIPW战略。在理论分析中,我们首先推导出鞅的大偏差原理,当第二次孵化的均值时,可以使用,并将其应用于我们提出的策略。然后,我们表明,拟议的策略在错误识别的可能性达到了Kaufmann等人的意义上是渐近最佳的。 (2016)当样品尺寸无限大而双臂之间的间隙变为零。
translated by 谷歌翻译