The physics-informed neural operator (PINO) is a machine learning architecture that has shown promising empirical results for learning partial differential equations. PINO uses the Fourier neural operator (FNO) architecture to overcome the optimization challenges often faced by physics-informed neural networks. Since the convolution operator in PINO uses the Fourier series representation, its gradient can be computed exactly on the Fourier space. While Fourier series cannot represent nonperiodic functions, PINO and FNO still have the expressivity to learn nonperiodic problems with Fourier extension via padding. However, computing the Fourier extension in the physics-informed optimization requires solving an ill-conditioned system, resulting in inaccurate derivatives which prevent effective optimization. In this work, we present an architecture that leverages Fourier continuation (FC) to apply the exact gradient method to PINO for nonperiodic problems. This paper investigates three different ways that FC can be incorporated into PINO by testing their performance on a 1D blowup problem. Experiments show that FC-PINO outperforms padded PINO, improving equation loss by several orders of magnitude, and it can accurately capture the third order derivatives of nonsmooth solution functions.
translated by 谷歌翻译
机器学习方法最近在求解部分微分方程(PDE)中的承诺。它们可以分为两种广泛类别:近似解决方案功能并学习解决方案操作员。物理知识的神经网络(PINN)是前者的示例,而傅里叶神经操作员(FNO)是后者的示例。这两种方法都有缺点。 Pinn的优化是具有挑战性,易于发生故障,尤其是在多尺度动态系统上。 FNO不会遭受这种优化问题,因为它在给定的数据集上执行了监督学习,但获取此类数据可能太昂贵或无法使用。在这项工作中,我们提出了物理知识的神经运营商(Pino),在那里我们结合了操作学习和功能优化框架。这种综合方法可以提高PINN和FNO模型的收敛速度和准确性。在操作员学习阶段,Pino在参数PDE系列的多个实例上学习解决方案操作员。在测试时间优化阶段,Pino优化预先训练的操作员ANSATZ,用于PDE的查询实例。实验显示Pino优于许多流行的PDE家族的先前ML方法,同时保留与求解器相比FNO的非凡速度。特别是,Pino准确地解决了挑战的长时间瞬态流量,而其他基线ML方法无法收敛的Kolmogorov流程。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
光谱方法是求解部分微分方程(PDE)的科学计算的武器的重要组成部分。然而,它们的适用性和有效性在很大程度上取决于用于扩展PDE溶液的基础函数的选择。过去十年已经看到,在提供复杂职能的有效陈述方面,深入学习的出现是强烈的竞争者。在目前的工作中,我们提出了一种用谱方法结合深神经网络来解决PDE的方法。特别是,我们使用称为深度操作系统网络(DeepOnet)的深度学习技术,以识别扩展PDE解决方案的候选功能。我们已经设计了一种方法,该方法使用DeepOnet提供的候选功能作为构建具有以下属性的一组功能的起点:i)它们构成基础,2)它们是正常的,3)它们是等级的,类似于傅里叶系列或正交多项式。我们利用了我们定制的基础函数的有利属性,以研究其近似能力,并使用它们来扩展线性和非线性时间依赖性PDE的解决方案。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
深度学习替代模型已显示出在解决部分微分方程(PDE)方面的希望。其中,傅立叶神经操作员(FNO)达到了良好的准确性,并且与数值求解器(例如流体流量)上的数值求解器相比要快得多。但是,FNO使用快速傅立叶变换(FFT),该变换仅限于具有均匀网格的矩形域。在这项工作中,我们提出了一个新框架,即Geo-Fno,以解决任意几何形状的PDE。 Geo-FNO学会将可能不规则的输入(物理)结构域变形为具有均匀网格的潜在空间。具有FFT的FNO模型应用于潜在空间。所得的GEO-FNO模型既具有FFT的计算效率,也具有处理任意几何形状的灵活性。我们的Geo-FNO在其输入格式,,即点云,网格和设计参数方面也很灵活。我们考虑了各种PDE,例如弹性,可塑性,Euler和Navier-Stokes方程,以及正向建模和逆设计问题。与标准数值求解器相比,与标准数值求解器相比,Geo-fno的价格比标准数值求解器快两倍,与在现有基于ML的PDE求解器(如标准FNO)上进行直接插值相比,Geo-fno更准确。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
机器学习方法最近已用于求解微分方程和动态系统。这些方法已发展为一个新型的研究领域,称为科学机器学习,其中深层神经网络和统计学习等技术应用于应用数学的经典问题。由于神经网络提供了近似能力,因此在求解各种偏微分方程(PDE)时,通过机器学习和优化方法通过机器学习和优化方法实现了明显的性能。在本文中,我们开发了一种新颖的数值算法,该算法结合了机器学习和人工智能来解决PDE。特别是,我们基于Legendre-Galerkin神经网络提出了一种无监督的机器学习算法,以找到与不同类型PDE的解决方案的准确近似值。提出的神经网络应用于一般的1D和2D PDE,以及具有边界层行为的奇异扰动PDE。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
We present an end-to-end framework to learn partial differential equations that brings together initial data production, selection of boundary conditions, and the use of physics-informed neural operators to solve partial differential equations that are ubiquitous in the study and modeling of physics phenomena. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our physics-informed neural operators to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled partial differential equations. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the source code, an interactive website to visualize the predictions of our physics informed neural operators, and a tutorial for their use at the Data and Learning Hub for Science.
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
Boundary conditions (BCs) are important groups of physics-enforced constraints that are necessary for solutions of Partial Differential Equations (PDEs) to satisfy at specific spatial locations. These constraints carry important physical meaning, and guarantee the existence and the uniqueness of the PDE solution. Current neural-network based approaches that aim to solve PDEs rely only on training data to help the model learn BCs implicitly. There is no guarantee of BC satisfaction by these models during evaluation. In this work, we propose Boundary enforcing Operator Network (BOON) that enables the BC satisfaction of neural operators by making structural changes to the operator kernel. We provide our refinement procedure, and demonstrate the satisfaction of physics-based BCs, e.g. Dirichlet, Neumann, and periodic by the solutions obtained by BOON. Numerical experiments based on multiple PDEs with a wide variety of applications indicate that the proposed approach ensures satisfaction of BCs, and leads to more accurate solutions over the entire domain. The proposed correction method exhibits a (2X-20X) improvement over a given operator model in relative $L^2$ error (0.000084 relative $L^2$ error for Burgers' equation).
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译
已经提出了物理信息神经网络(PINN)来学习偏微分方程(PDE)的解决方案。在PINN中,感兴趣的PDE及其边界条件的残余形式被归为复合目标函数,作为软惩罚。在这里,我们表明,将目标函数制定的这种特定方式是应用于不同种类PDE的PINN方法中严重限制的来源。为了解决这些局限性,我们提出了一个基于约束优化问题公式的多功能框架,在该框架中,我们使用增强的拉格朗日方法(ALM)来限制PDE的解决方案,并具有其边界条件和任何可能可用的高保真数据。我们的方法擅长于具有多保真数据融合的转发和反问题。我们通过将其应用于涉及多维PDE的几个远期和反向问题来证明物理和相等性约束深度学习框架的功效和多功能性。您的框架与最先进的框架相比,与最先进的框架提高了幅度的提高顺序。 ART物理信息的神经网络。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在本文中,开发了用于求解具有delta功能奇异源的椭圆方程的浅丽兹型神经网络。目前的工作中有三个新颖的功能。即,(i)Delta函数奇异性自然删除,(ii)级别集合函数作为功能输入引入,(iii)它完全浅,仅包含一个隐藏层。我们首先介绍问题的能量功能,然后转换奇异源对沿界面的常规表面积分的贡献。以这种方式,可以自然删除三角洲函数,而无需引入传统正规化方法(例如众所周知的沉浸式边界方法)中常用的函数。然后将最初的问题重新重新审议为最小化问题。我们提出了一个带有一个隐藏层的浅丽兹型神经网络,以近似能量功能的全局最小化器。结果,通过最大程度地减少能源的离散版本的损耗函数来训练网络。此外,我们将界面的级别设置函数作为网络的功能输入,并发现它可以显着提高训练效率和准确性。我们执行一系列数值测试,以显示本方法的准确性及其在不规则域和较高维度中问题的能力。
translated by 谷歌翻译
神经运营商最近成为设计神经网络形式的功能空间之间的解决方案映射的流行工具。不同地,从经典的科学机器学习方法,以固定分辨率为输入参数的单个实例学习参数,神经运算符近似PDE系列的解决方案图。尽管他们取得了成功,但是神经运营商的用途迄今为止仅限于相对浅的神经网络,并限制了学习隐藏的管理法律。在这项工作中,我们提出了一种新颖的非局部神经运营商,我们将其称为非本体内核网络(NKN),即独立的分辨率,其特征在于深度神经网络,并且能够处理各种任务,例如学习管理方程和分类图片。我们的NKN源于神经网络的解释,作为离散的非局部扩散反应方程,在无限层的极限中,相当于抛物线非局部方程,其稳定性通过非本种载体微积分分析。与整体形式的神经运算符相似允许NKN捕获特征空间中的远程依赖性,而节点到节点交互的持续处理使NKNS分辨率独立于NKNS分辨率。与神经杂物中的相似性,在非本体意义上重新解释,并且层之间的稳定网络动态允许NKN的最佳参数从浅到深网络中的概括。这一事实使得能够使用浅层初始化技术。我们的测试表明,NKNS在学习管理方程和图像分类任务中占据基线方法,并概括到不同的分辨率和深度。
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译
We investigate the parameterization of deep neural networks that by design satisfy the continuity equation, a fundamental conservation law. This is enabled by the observation that any solution of the continuity equation can be represented as a divergence-free vector field. We hence propose building divergence-free neural networks through the concept of differential forms, and with the aid of automatic differentiation, realize two practical constructions. As a result, we can parameterize pairs of densities and vector fields that always exactly satisfy the continuity equation, foregoing the need for extra penalty methods or expensive numerical simulation. Furthermore, we prove these models are universal and so can be used to represent any divergence-free vector field. Finally, we experimentally validate our approaches by computing neural network-based solutions to fluid equations, solving for the Hodge decomposition, and learning dynamical optimal transport maps.
translated by 谷歌翻译