The discovery of drug-target interactions (DTIs) is a pivotal process in pharmaceutical development. Computational approaches are a promising and efficient alternative to tedious and costly wet-lab experiments for predicting novel DTIs from numerous candidates. Recently, with the availability of abundant heterogeneous biological information from diverse data sources, computational methods have been able to leverage multiple drug and target similarities to boost the performance of DTI prediction. Similarity integration is an effective and flexible strategy to extract crucial information across complementary similarity views, providing a compressed input for any similarity-based DTI prediction model. However, existing similarity integration methods filter and fuse similarities from a global perspective, neglecting the utility of similarity views for each drug and target. In this study, we propose a Fine-Grained Selective similarity integration approach, called FGS, which employs a local interaction consistency-based weight matrix to capture and exploit the importance of similarities at a finer granularity in both similarity selection and combination steps. We evaluate FGS on five DTI prediction datasets under various prediction settings. Experimental results show that our method not only outperforms similarity integration competitors with comparable computational costs, but also achieves better prediction performance than state-of-the-art DTI prediction approaches by collaborating with conventional base models. Furthermore, case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.
translated by 谷歌翻译
发现药物目标相互作用(DTI)是一个非常有前途的研究领域,具有巨大的潜力。通过计算方法对药物和蛋白质之间可靠的相互作用的准确鉴定,这些方法通常利用从不同数据源检索到的异质信息,可以提高有效药物的发展。尽管随机行走和基质分解技术被广泛用于DTI预测中,但它们有几个局限性。通常以无监督的方式进行基于步行的嵌入生成,而矩阵分解中的线性相似性组合会扭曲不同视图提供的单个见解。为了解决这些问题,我们采用多层网络方法来处理多样化的药物和靶向相似性,并提出了一个新颖的优化框架,称为多重相似性基于DEEPSWALK的矩阵分解(MDMF),以进行DTI预测。该框架统一了嵌入的产生和相互作用预测,药物的学习矢量表示以及目标不仅保留了所有超层和特定层特异性局部不变性的高阶接近性,而且还可以近似与其内部产品的相互作用。此外,我们开发了一种集成方法(MDMF2A),该方法集成了MDMF模型的两个实例化,优化了Precision-Recall曲线(AUPR)和接收器操作特征曲线(AUC)下的面积。关于现实世界DTI数据集的实证研究表明,我们的方法在四种不同的环境中对当前最新方法实现了统计学上的显着改善。此外,对高度排名的非相互作用对的验证也证明了MDMF2A发现新型DTI的潜力。
translated by 谷歌翻译
刺激:鉴定药物靶标相互作用(DTIS)是药物重新定位的关键步骤。近年来,大量基因组学和药理学数据的积累已经形成了大众药物和目标相关的异构网络(HNS),这提供了开发基于HN的计算模型的新机遇,以准确地预测DTI。 HN意味着许多有关DTI的有用信息,还包含无关的数据,以及如何使最佳的异构网络仍然是一个挑战。结果:在本文中,我们提出了一种基于异构的图形自动元路径学习的DTI预测方法(Hampdti)。 Hampdti从HN自动学习药物和目标之间的重要元路径,并产生元路径图。对于每个元路径图,从药物分子图和靶蛋白序列中学习的特征用作节点属性,然后设计了有效地考虑节点类型信息(药物或目标)的节点类型特定图卷积网络(NSGCN)学习药物和目标的嵌入。最后,组合来自多个元路径图的嵌入式以预测新的DTI。基准数据集的实验表明,与最先进的DTI预测方法相比,我们提出的Hampdti实现了卓越的性能。更重要的是,Hampdti识别DTI预测的重要元路径,这可以解释药物如何与HNS中的目标连接。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
来自最近的研究的日益增长的证据意味着MicroRNA或miRNA可以作为各种复杂人类疾病中的生物标志物。由于湿实验室实验昂贵且耗时,MiRNA疾病协会预测的计算技术近年来引起了很多关注。数据稀缺是建立可靠机器学习模式的主要挑战之一。数据稀缺结合使用预先计算的手工制作输入功能导致了过度装备和数据泄漏的问题。我们通过提出一种基于新的多任务图卷积的方法来克服现有作品的局限性,我们称之为粘基。杀菌允许自动特征提取,同时将知识与五个异质生物信息来源(miRNA /疾病和蛋白质编码基因(PCG)之间的相互作用,多任务设置中的蛋白质编码基因,miRNA家族信息和病理学之间的相互作用。这是一种新颖的视角,并未在之前进行过。为了有效地测试我们模型的泛化能力,我们在标准基准数据集中构建了大规模实验,以及我们提出的更大的独立测试集和案例研究。杀螨物显示出在HMDDV2.0和HMDDV3.0数据集上的5倍CV评估中的至少3%,并且在较大独立的测试集上至少35%,并在最先进的方法上具有看不见的miRNA和疾病。我们分享我们的重复性和未来研究代码,以便在https://git.l3s.uni-hannover.de/dong/cmtt。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
该药物发现​​和开发过程是一个漫长而昂贵的过程,每次药物平均耗资超过10亿美元,需要10 - 15年的时间。为了减少在整个过程中的高水平流失量,在最近十年中,越来越多地将机器学习方法应用于药物发现和发育的各个阶段,尤其是在最早鉴定可药物疾病基因的阶段。在本文中,我们开发了一种新的张量分解模型,以预测用于治疗疾病的潜在药物靶标(基因或蛋白质)。我们创建了一个三维数据张量,该数据张量由1,048个基因靶标,860个疾病和230,0111111111111111111111111111111的证据属性和临床结果,并使用从开放式目标和药物数据库中提取的数据组成。我们用从药物发现的知识图中学到的基因目标表示丰富了数据,并应用了我们提出的方法来预测看不见的基因靶标和疾病对的临床结果。我们设计了三种评估策略来衡量预测性能,并将几个常用的机器学习分类器与贝叶斯矩阵和张量分解方法进行了基准测试。结果表明,合并知识图嵌入可显着提高预测准确性,并与密集的神经网络一起训练张量分解优于所有其他基线。总而言之,我们的框架结合了两种积极研究的机器学习方法,用于疾病目标识别,即张量分解和知识图表示学习,这可能是在数据驱动的药物发现中进一步探索的有希望的途径。
translated by 谷歌翻译
The development of deep neural networks has improved representation learning in various domains, including textual, graph structural, and relational triple representations. This development opened the door to new relation extraction beyond the traditional text-oriented relation extraction. However, research on the effectiveness of considering multiple heterogeneous domain information simultaneously is still under exploration, and if a model can take an advantage of integrating heterogeneous information, it is expected to exhibit a significant contribution to many problems in the world. This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study and realizes relation extraction utilizing heterogeneous domain information. First, a deep neural relation extraction model is prepared and its attention mechanism is analyzed. Next, a method to combine the drug molecular structure information and drug description information to the input sentence information is proposed, and the effectiveness of utilizing drug molecular structures and drug descriptions for the relation extraction task is shown. Then, in order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected from multiple existing databases and a new data set in the form of a knowledge graph (KG) is constructed. A link prediction task on the constructed data set is conducted to obtain embedding representations of drugs that contain the heterogeneous domain information. Finally, a method that integrates the input sentence information and the heterogeneous KG information is proposed. The proposed model is trained and evaluated on a widely used data set, and as a result, it is shown that utilizing heterogeneous domain information significantly improves the performance of relation extraction from the literature.
translated by 谷歌翻译
药物 - 药物相互作用(DDIS)可能会阻碍药物的功能,在最坏的情况下,它们可能导致不良药物反应(ADR)。预测所有DDI是一个具有挑战性且关键的问题。大多数现有的计算模型都集成了来自不同来源的药物中心信息,并利用它们作为机器学习分类器中的功能来预测DDIS。但是,这些模型有很大的失败机会,尤其是对于所有信息都没有可用的新药。本文提出了一个新型的HyperGraph神经网络(HYGNN)模型,仅基于用于DDI预测问题的任何药物的微笑串。为了捕获药物的相似性,我们创建了从微笑字符串中提取的药物的化学子结构中创建的超图。然后,我们开发了由新型的基于注意力的超图边缘编码器组成的HYGNN,以使药物的表示形式和解码器,以预测药物对之间的相互作用。此外,我们进行了广泛的实验,以评估我们的模型并将其与几种最新方法进行比较。实验结果表明,我们提出的HYGNN模型有效地预测了DDI,并以最大的ROC-AUC和PR-AUC分别超过基准,分别为97.9%和98.1%。
translated by 谷歌翻译
药物发现和发展是一个复杂和昂贵的过程。正在研究机器学习方法,以帮助提高药物发现管道多个阶段的有效性和速度。其中,使用知识图表(kg)的那些在许多任务中具有承诺,包括药物修复,药物毒性预测和靶基因疾病优先级。在药物发现kg中,包括基因,疾病和药物在内的关键因素被认为是实体,而它们之间的关系表示相互作用。但是,为了构建高质量的KG,需要合适的数据。在这篇综述中,我们详细介绍了适用于构建聚焦KGS的药物发现的公开使用来源。我们的目标是帮助引导机器学习和kg从业者对吸毒者发现领域应用新技术,但是谁可能不熟悉相关的数据来源。通过严格的标准选择数据集,根据包含内部包含的主要信息类型,并基于可以提取的信息来进行分类以构建kg。然后,我们对现有的公共药物发现KGS进行了比较分析,并评估了文献中所选择的激励案例研究。此外,我们还提出了众多和与域及其数据集相关的众多挑战和问题,同时突出了关键的未来研究方向。我们希望本综述将激励KGS在药物发现领域的关键和新兴问题中使用。
translated by 谷歌翻译
生物医学网络上的自我监督的代表学习(SSL)为药物发现提供了新的机会,这些机会缺乏可用的生物或临床表型。但是,如何有效地结合多个SSL模型是具有挑战性的并且很少探索。因此,我们提出了对药物发现的生物医学网络的自我监督代表学习的多任务联合策略,命名为MSSL2DRUG。我们设计了六种基本的SSL任务,这些任务受到各种方式特征,包括生物医学异构网络中的结构,语义和属性,包括结构,语义和属性。此外,通过两种药物发现场景中的基于图表的对抗的对抗性多任务学习框架评估了多份任务的十五个组合。结果表明了两个重要的发现。 (1)与其他多任务联合策略相比,多模式任务的组合实现了最佳性能。 (2)本地和全球SSL任务的联合培训比随机任务组合产生更高的性能。因此,我们猜想多式联运和本地全球组合策略可以被视为多任务SSL对药物发现的指导。
translated by 谷歌翻译
根据有关批准药物的信息预测药物的新作用可以被视为推荐系统。矩阵分解是最常用的推荐系统之一,为其设计了各种算法。用于预测药物效应的现有算法的文献调查和摘要表明,大多数此类方法,包括邻里正规逻辑矩阵分解,这是基准测试中最佳性能的最佳性能,它使用了仅考虑存在或不存在相互作用的二进制矩阵。但是,已知药物作用具有两个相反的方面,例如副作用和治疗作用。在本研究中,我们建议使用邻域正规化双向基质分解(NRBDMF)通过纳入双向性来预测药物作用,这是药物效应的特征。我们使用这种建议的方法使用矩阵来预测副作用,该基质考虑了药物效应的双向,其中已知的副作用被分配为阳性标签(加1),并为已知的治疗效应分配了阴性(负1)标签。使用药物双向信息的NRBDMF模型在预测列表的底部达到了副作用的富集和指示。第一次尝试使用NRBDMF来考虑药物效应的双向性质的尝试表明,它降低了假阳性并产生了高度可解释的输出。
translated by 谷歌翻译
计算药物重新定位旨在发现销售药物的新治疗疾病,与传统药物开发相比,成本低,开发周期较低,可控性高的优点。由于其易于实现和优异的可扩展性,矩阵分解模型已成为计算药物重新定位的基石技术。然而,矩阵分解模型使用内在产品来表示药物和疾病之间的关联,这缺乏表达能力。此外,在其各自的潜在因子载体上不能暗示药物或疾病的相似性,这不满足常见的药物发现感。因此,在这项工作中提出了用于计算药物重新定位的神经度量分解模型(NMF)。我们新建了药物和疾病的潜在因子载体作为高维坐标系的点,提出了一种广义的欧氏距离,以代表药物和疾病之间的关联,以补偿内部产品的缺点。此外,通过将多种药物(疾病)指标信息嵌入到潜在因子向量的编码空间中,可以反映出药物(疾病)之间的相似性的信息反映在潜在因子向量之间的距离中。最后,我们对两个真实数据集进行了广泛的分析实验,以证明上述改进点和NMF模型的优越性的有效性。
translated by 谷歌翻译
Drug repositioning holds great promise because it can reduce the time and cost of new drug development. While drug repositioning can omit various R&D processes, confirming pharmacological effects on biomolecules is essential for application to new diseases. Biomedical explainability in a drug repositioning model can support appropriate insights in subsequent in-depth studies. However, the validity of the XAI methodology is still under debate, and the effectiveness of XAI in drug repositioning prediction applications remains unclear. In this study, we propose GraphIX, an explainable drug repositioning framework using biological networks, and quantitatively evaluate its explainability. GraphIX first learns the network weights and node features using a graph neural network from known drug indication and knowledge graph that consists of three types of nodes (but not given node type information): disease, drug, and protein. Analysis of the post-learning features showed that node types that were not known to the model beforehand are distinguished through the learning process based on the graph structure. From the learned weights and features, GraphIX then predicts the disease-drug association and calculates the contribution values of the nodes located in the neighborhood of the predicted disease and drug. We hypothesized that the neighboring protein node to which the model gave a high contribution is important in understanding the actual pharmacological effects. Quantitative evaluation of the validity of protein nodes' contribution using a real-world database showed that the high contribution proteins shown by GraphIX are reasonable as a mechanism of drug action. GraphIX is a framework for evidence-based drug discovery that can present to users new disease-drug associations and identify the protein important for understanding its pharmacological effects from a large and complex knowledge base.
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
我们提出了分子法律网络(MOOMIN)一种由阿斯利康肿瘤学家使用的多模式图神经网络,以预测用于癌症治疗的药物组合的协同作用。我们的模型基于药物蛋白质相互作用网络和元数据以多种尺度学习药物表示。对化合物和蛋白质的结构特性进行编码,以创建在双方相互作用图上运行的消息通话方案的顶点特征。传播消息形成多分辨率的药物表示,我们用来创建药物对描述符。通过调节癌细胞类型的药物组合表示形式,我们定义了一种协同评分功能,该功能可以感应地评分看不见的药物对。有关协同评分任务的实验结果表明,穆明的表现优于最先进的图形指纹,保持节点嵌入以及现有的深度学习方法。进一步的结果表明,我们的模型的预测性能对超参数变化是可靠的。我们证明该模型可以在癌细胞系组织中进行高质量的预测,样本外预测可以通过外部协同效应数据库进行验证,并且所提出的模型在学习方面有效。
translated by 谷歌翻译
病毒感染导致全世界的显着发病率和死亡率。理解特定病毒和人类蛋白质之间的相互作用模式在揭示病毒感染和发病机制的潜在机制方面发挥着至关重要的作用。这可以进一步帮助预防和治疗病毒相关疾病。然而,由于病毒 - 人类相互作用的稀缺数据和大多数病毒的快速突变率,预测新病毒和人体细胞之间的蛋白质 - 蛋白质相互作用的任务是非常挑战性的。我们开发了一种多任务转移学习方法,利用人类互乱组约2400万蛋白序列和相互作用模式的信息来解决小型训练数据集的问题。除了使用手工制作的蛋白质特征,而不是通过深语模型方法从巨大的蛋白质序列来源学习的统计学上丰富的蛋白质表示。此外,我们采用了额外的目的,旨在最大限度地提高观察人蛋白质蛋白质相互作用的可能性。这一附加任务目标充当规律器,还允许纳入域知识来告知病毒 - 人蛋白质 - 蛋白质相互作用预测模型。我们的方法在13个基准数据集中实现了竞争力,以及SAR-COV-2病毒受体的案例研究。实验结果表明,我们所提出的模型有效地用于病毒 - 人和细菌 - 人蛋白质 - 蛋白质 - 蛋白质相互作用预测任务。我们分享我们的重复性和未来研究代码,以便在https://git.l3s.uni-hannover.de/dong/multitastastastastastastastastastask-transfer。
translated by 谷歌翻译
在本文中,我们提供了针对深度学习(DL)模型的结构化文献分析,该模型用于支持癌症生物学的推论,并特别强调了多词分析。这项工作着重于现有模型如何通过先验知识,生物学合理性和解释性,生物医学领域的基本特性来解决更好的对话。我们讨论了DL模型的最新进化拱门沿整合先前的生物关系和网络知识的方向,以支持更好的概括(例如途径或蛋白质 - 蛋白质相互作用网络)和解释性。这代表了向模型的基本功能转变,该模型可以整合机械和统计推断方面。我们讨论了在此类模型中整合域先验知识的代表性方法。该论文还为解释性和解释性的当代方法提供了关键的看法。该分析指向编码先验知识和改善解释性之间的融合方向。
translated by 谷歌翻译
Predicting drug side-effects before they occur is a key task in keeping the number of drug-related hospitalizations low and to improve drug discovery processes. Automatic predictors of side-effects generally are not able to process the structure of the drug, resulting in a loss of information. Graph neural networks have seen great success in recent years, thanks to their ability of exploiting the information conveyed by the graph structure and labels. These models have been used in a wide variety of biological applications, among which the prediction of drug side-effects on a large knowledge graph. Exploiting the molecular graph encoding the structure of the drug represents a novel approach, in which the problem is formulated as a multi-class multi-label graph-focused classification. We developed a methodology to carry out this task, using recurrent Graph Neural Networks, and building a dataset from freely accessible and well established data sources. The results show that our method has an improved classification capability, under many parameters and metrics, with respect to previously available predictors.
translated by 谷歌翻译