药物 - 药物相互作用(DDIS)可能会阻碍药物的功能,在最坏的情况下,它们可能导致不良药物反应(ADR)。预测所有DDI是一个具有挑战性且关键的问题。大多数现有的计算模型都集成了来自不同来源的药物中心信息,并利用它们作为机器学习分类器中的功能来预测DDIS。但是,这些模型有很大的失败机会,尤其是对于所有信息都没有可用的新药。本文提出了一个新型的HyperGraph神经网络(HYGNN)模型,仅基于用于DDI预测问题的任何药物的微笑串。为了捕获药物的相似性,我们创建了从微笑字符串中提取的药物的化学子结构中创建的超图。然后,我们开发了由新型的基于注意力的超图边缘编码器组成的HYGNN,以使药物的表示形式和解码器,以预测药物对之间的相互作用。此外,我们进行了广泛的实验,以评估我们的模型并将其与几种最新方法进行比较。实验结果表明,我们提出的HYGNN模型有效地预测了DDI,并以最大的ROC-AUC和PR-AUC分别超过基准,分别为97.9%和98.1%。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
我们提出了分子法律网络(MOOMIN)一种由阿斯利康肿瘤学家使用的多模式图神经网络,以预测用于癌症治疗的药物组合的协同作用。我们的模型基于药物蛋白质相互作用网络和元数据以多种尺度学习药物表示。对化合物和蛋白质的结构特性进行编码,以创建在双方相互作用图上运行的消息通话方案的顶点特征。传播消息形成多分辨率的药物表示,我们用来创建药物对描述符。通过调节癌细胞类型的药物组合表示形式,我们定义了一种协同评分功能,该功能可以感应地评分看不见的药物对。有关协同评分任务的实验结果表明,穆明的表现优于最先进的图形指纹,保持节点嵌入以及现有的深度学习方法。进一步的结果表明,我们的模型的预测性能对超参数变化是可靠的。我们证明该模型可以在癌细胞系组织中进行高质量的预测,样本外预测可以通过外部协同效应数据库进行验证,并且所提出的模型在学习方面有效。
translated by 谷歌翻译
刺激:鉴定药物靶标相互作用(DTIS)是药物重新定位的关键步骤。近年来,大量基因组学和药理学数据的积累已经形成了大众药物和目标相关的异构网络(HNS),这提供了开发基于HN的计算模型的新机遇,以准确地预测DTI。 HN意味着许多有关DTI的有用信息,还包含无关的数据,以及如何使最佳的异构网络仍然是一个挑战。结果:在本文中,我们提出了一种基于异构的图形自动元路径学习的DTI预测方法(Hampdti)。 Hampdti从HN自动学习药物和目标之间的重要元路径,并产生元路径图。对于每个元路径图,从药物分子图和靶蛋白序列中学习的特征用作节点属性,然后设计了有效地考虑节点类型信息(药物或目标)的节点类型特定图卷积网络(NSGCN)学习药物和目标的嵌入。最后,组合来自多个元路径图的嵌入式以预测新的DTI。基准数据集的实验表明,与最先进的DTI预测方法相比,我们提出的Hampdti实现了卓越的性能。更重要的是,Hampdti识别DTI预测的重要元路径,这可以解释药物如何与HNS中的目标连接。
translated by 谷歌翻译
The development of deep neural networks has improved representation learning in various domains, including textual, graph structural, and relational triple representations. This development opened the door to new relation extraction beyond the traditional text-oriented relation extraction. However, research on the effectiveness of considering multiple heterogeneous domain information simultaneously is still under exploration, and if a model can take an advantage of integrating heterogeneous information, it is expected to exhibit a significant contribution to many problems in the world. This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study and realizes relation extraction utilizing heterogeneous domain information. First, a deep neural relation extraction model is prepared and its attention mechanism is analyzed. Next, a method to combine the drug molecular structure information and drug description information to the input sentence information is proposed, and the effectiveness of utilizing drug molecular structures and drug descriptions for the relation extraction task is shown. Then, in order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected from multiple existing databases and a new data set in the form of a knowledge graph (KG) is constructed. A link prediction task on the constructed data set is conducted to obtain embedding representations of drugs that contain the heterogeneous domain information. Finally, a method that integrates the input sentence information and the heterogeneous KG information is proposed. The proposed model is trained and evaluated on a widely used data set, and as a result, it is shown that utilizing heterogeneous domain information significantly improves the performance of relation extraction from the literature.
translated by 谷歌翻译
Predicting drug side-effects before they occur is a key task in keeping the number of drug-related hospitalizations low and to improve drug discovery processes. Automatic predictors of side-effects generally are not able to process the structure of the drug, resulting in a loss of information. Graph neural networks have seen great success in recent years, thanks to their ability of exploiting the information conveyed by the graph structure and labels. These models have been used in a wide variety of biological applications, among which the prediction of drug side-effects on a large knowledge graph. Exploiting the molecular graph encoding the structure of the drug represents a novel approach, in which the problem is formulated as a multi-class multi-label graph-focused classification. We developed a methodology to carry out this task, using recurrent Graph Neural Networks, and building a dataset from freely accessible and well established data sources. The results show that our method has an improved classification capability, under many parameters and metrics, with respect to previously available predictors.
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
发现药物目标相互作用(DTI)是一个非常有前途的研究领域,具有巨大的潜力。通过计算方法对药物和蛋白质之间可靠的相互作用的准确鉴定,这些方法通常利用从不同数据源检索到的异质信息,可以提高有效药物的发展。尽管随机行走和基质分解技术被广泛用于DTI预测中,但它们有几个局限性。通常以无监督的方式进行基于步行的嵌入生成,而矩阵分解中的线性相似性组合会扭曲不同视图提供的单个见解。为了解决这些问题,我们采用多层网络方法来处理多样化的药物和靶向相似性,并提出了一个新颖的优化框架,称为多重相似性基于DEEPSWALK的矩阵分解(MDMF),以进行DTI预测。该框架统一了嵌入的产生和相互作用预测,药物的学习矢量表示以及目标不仅保留了所有超层和特定层特异性局部不变性的高阶接近性,而且还可以近似与其内部产品的相互作用。此外,我们开发了一种集成方法(MDMF2A),该方法集成了MDMF模型的两个实例化,优化了Precision-Recall曲线(AUPR)和接收器操作特征曲线(AUC)下的面积。关于现实世界DTI数据集的实证研究表明,我们的方法在四种不同的环境中对当前最新方法实现了统计学上的显着改善。此外,对高度排名的非相互作用对的验证也证明了MDMF2A发现新型DTI的潜力。
translated by 谷歌翻译
协同的药物组合为增强治疗功效和减少不良反应提供了巨大的潜力。然而,由于未知的因果疾病信号通路,有效和协同的药物组合预测仍然是一个悬而未决的问题。尽管已经提出了各种深度学习(AI)模型来定量预测药物组合的协同作用。现有深度学习方法的主要局限性是它们本质上是不可解释的,这使得AI模型的结论是对人类专家的非透明度的结论,因此限制了模型结论的鲁棒性和这些模型在现实世界中的实施能力人类医疗保健。在本文中,我们开发了一个可解释的图神经网络(GNN),该神经网络(GNN)揭示了通过挖掘非常重要的亚分子网络来揭示协同(MOS)的基本基本治疗靶标和机制。可解释的GNN预测模型的关键点是一个新颖的图池层,基于自我注意的节点和边缘池(此后为SANEPOOL),可以根据节点特征和图表计算节点和边缘的注意力评分(重要性)拓扑。因此,提出的GNN模型提供了一种系统的方法来预测和解释基于检测到的关键亚分子网络的药物组合协同作用。我们评估了来自NCI Almanac药物组合筛查数据的46个核心癌症信号通路和药物组合的基因制造的分子网络。实验结果表明,1)Sanepool可以在其他流行的图神经网络中实现当前的最新性能; 2)由SANEPOOOL检测到的亚分子网络是可自我解释的,并且可以鉴定协同的药物组合。
translated by 谷歌翻译
We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging and realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research. OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs. For each dataset, we provide a unified evaluation protocol using meaningful application-specific data splits and evaluation metrics. In addition to building the datasets, we also perform extensive benchmark experiments for each dataset. Our experiments suggest that OGB datasets present significant challenges of scalability to large-scale graphs and out-of-distribution generalization under realistic data splits, indicating fruitful opportunities for future research. Finally, OGB provides an automated end-to-end graph ML pipeline that simplifies and standardizes the process of graph data loading, experimental setup, and model evaluation. OGB will be regularly updated and welcomes inputs from the community. OGB datasets as well as data loaders, evaluation scripts, baseline code, and leaderboards are publicly available at https://ogb.stanford.edu.
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
生物医学网络上的自我监督的代表学习(SSL)为药物发现提供了新的机会,这些机会缺乏可用的生物或临床表型。但是,如何有效地结合多个SSL模型是具有挑战性的并且很少探索。因此,我们提出了对药物发现的生物医学网络的自我监督代表学习的多任务联合策略,命名为MSSL2DRUG。我们设计了六种基本的SSL任务,这些任务受到各种方式特征,包括生物医学异构网络中的结构,语义和属性,包括结构,语义和属性。此外,通过两种药物发现场景中的基于图表的对抗的对抗性多任务学习框架评估了多份任务的十五个组合。结果表明了两个重要的发现。 (1)与其他多任务联合策略相比,多模式任务的组合实现了最佳性能。 (2)本地和全球SSL任务的联合培训比随机任务组合产生更高的性能。因此,我们猜想多式联运和本地全球组合策略可以被视为多任务SSL对药物发现的指导。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
蛋白质 - 配体相互作用(PLIS)是生化研究的基础,其鉴定对于估计合理治疗设计的生物物理和生化特性至关重要。目前,这些特性的实验表征是最准确的方法,然而,这是非常耗时和劳动密集型的。在这种情况下已经开发了许多计算方法,但大多数现有PLI预测大量取决于2D蛋白质序列数据。在这里,我们提出了一种新颖的并行图形神经网络(GNN),以集成PLI预测的知识表示和推理,以便通过专家知识引导的深度学习,并通过3D结构数据通知。我们开发了两个不同的GNN架构,GNNF是采用不同特种的基础实现,以增强域名认识,而GNNP是一种新颖的实现,可以预测未经分子间相互作用的先验知识。综合评价证明,GNN可以成功地捕获配体和蛋白质3D结构之间的二元相互作用,对于GNNF的测试精度和0.958,用于预测蛋白质 - 配体络合物的活性。这些模型进一步适用于回归任务以预测实验结合亲和力,PIC50对于药物效力和功效至关重要。我们在实验亲和力上达到0.66和0.65的Pearson相关系数,分别在PIC50和GNNP上进行0.50和0.51,优于基于2D序列的模型。我们的方法可以作为可解释和解释的人工智能(AI)工具,用于预测活动,效力和铅候选的生物物理性质。为此,我们通过筛选大型复合库并将我们的预测与实验测量数据进行比较来展示GNNP对SARS-COV-2蛋白靶标的实用性。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
伴随的药物给药会引起药物 - 药物相互作用(DDIS)。某些药物组合是有益的,但其他药物组合可能会引起以前未记录的负面影响。以前关于DDI预测的工作通常依赖于手工设计的领域知识,这是努力获得的。在这项工作中,我们提出了一个新型模型,即分子亚结构网络(MSAN),以有效预测药物对分子结构的潜在DDI。我们采用类似变压器的子结构提取模块,以获取与药物分子的各种子结构模式相关的固定代表媒介。然后,两种药物的子结构之间的相互作用强度将由基于相似性的相互作用模块捕获。在图形编码之前,我们还执行一个子结构删除增强,以减轻过度拟合。实际数据集的实验结果表明,我们提出的模型实现了最新的性能。我们还表明,通过案例研究,我们的模型的预测是高度解释的。
translated by 谷歌翻译
预测药物 - 药物相互作用(DDI)是使用药物信息和许多对的已知副作用预测一对药物的副作用(不需要的结果)的问题。该问题可以制定为DDI图中每对节点的预测标签(即副作用),其中节点是药物,边缘是用已知标记的相互作用的药物。本问题的最先进方法是图形神经网络(GNN),其利用图中的邻居信息来学习节点表示。然而,对于DDI而言,由于副作用的性质,有许多具有复杂关系的标签。通常的GNN经常将标签固定为不反映标签关系的单热量矢量,并且可能在困难的难度标签中没有获得最高性能。在本文中,我们将DDI标准为一个超图,其中每个HINFEGE是三重:用于药物的两个节点和标签的一个节点。然后,我们呈现CentsMoothie,一个超图神经网络,它通过新颖的中央平滑制剂完全了解节点和标签的表示。我们经验展示了模拟中的CentsMoothie的性能优势以及真实数据集。
translated by 谷歌翻译
一种感染细菌和古代的原核病毒是微生物社区的关键球员。预测原核病毒的宿主有助于破译微生物之间的动态关系。虽然存在用于宿主鉴定的实验方法,但它们是劳动密集型或需要培养宿主细胞,从而产生对计算宿主预测的需求。尽管结果有一些有希望的结果,但计算宿主预测仍然是挑战,因为通过高通量测序技术通过有限的已知的相互作用和纯粹的测序量。最先进的方法只能在物种级别达到43%的精度。这项工作呈现樱桃,该工具配制主机预测作为知识图中的链路预测。作为病毒原核相互作用预测工具,可以应用樱桃以预测新发现病毒的宿主以及感染抗生素抗菌细菌的病毒。我们展示了樱桃对既有应用的效用,并将其性能与不同情景中的最先进的方法进行了比较。为了我们最好的知识,樱桃在识别病毒 - 原核互动方面具有最高的准确性。它优于物种水平的所有现有方法,精度增加37%。此外,樱桃的性能比其他工具更短的Contig。
translated by 谷歌翻译