根据有关批准药物的信息预测药物的新作用可以被视为推荐系统。矩阵分解是最常用的推荐系统之一,为其设计了各种算法。用于预测药物效应的现有算法的文献调查和摘要表明,大多数此类方法,包括邻里正规逻辑矩阵分解,这是基准测试中最佳性能的最佳性能,它使用了仅考虑存在或不存在相互作用的二进制矩阵。但是,已知药物作用具有两个相反的方面,例如副作用和治疗作用。在本研究中,我们建议使用邻域正规化双向基质分解(NRBDMF)通过纳入双向性来预测药物作用,这是药物效应的特征。我们使用这种建议的方法使用矩阵来预测副作用,该基质考虑了药物效应的双向,其中已知的副作用被分配为阳性标签(加1),并为已知的治疗效应分配了阴性(负1)标签。使用药物双向信息的NRBDMF模型在预测列表的底部达到了副作用的富集和指示。第一次尝试使用NRBDMF来考虑药物效应的双向性质的尝试表明,它降低了假阳性并产生了高度可解释的输出。
translated by 谷歌翻译
Drug repositioning holds great promise because it can reduce the time and cost of new drug development. While drug repositioning can omit various R&D processes, confirming pharmacological effects on biomolecules is essential for application to new diseases. Biomedical explainability in a drug repositioning model can support appropriate insights in subsequent in-depth studies. However, the validity of the XAI methodology is still under debate, and the effectiveness of XAI in drug repositioning prediction applications remains unclear. In this study, we propose GraphIX, an explainable drug repositioning framework using biological networks, and quantitatively evaluate its explainability. GraphIX first learns the network weights and node features using a graph neural network from known drug indication and knowledge graph that consists of three types of nodes (but not given node type information): disease, drug, and protein. Analysis of the post-learning features showed that node types that were not known to the model beforehand are distinguished through the learning process based on the graph structure. From the learned weights and features, GraphIX then predicts the disease-drug association and calculates the contribution values of the nodes located in the neighborhood of the predicted disease and drug. We hypothesized that the neighboring protein node to which the model gave a high contribution is important in understanding the actual pharmacological effects. Quantitative evaluation of the validity of protein nodes' contribution using a real-world database showed that the high contribution proteins shown by GraphIX are reasonable as a mechanism of drug action. GraphIX is a framework for evidence-based drug discovery that can present to users new disease-drug associations and identify the protein important for understanding its pharmacological effects from a large and complex knowledge base.
translated by 谷歌翻译
发现药物目标相互作用(DTI)是一个非常有前途的研究领域,具有巨大的潜力。通过计算方法对药物和蛋白质之间可靠的相互作用的准确鉴定,这些方法通常利用从不同数据源检索到的异质信息,可以提高有效药物的发展。尽管随机行走和基质分解技术被广泛用于DTI预测中,但它们有几个局限性。通常以无监督的方式进行基于步行的嵌入生成,而矩阵分解中的线性相似性组合会扭曲不同视图提供的单个见解。为了解决这些问题,我们采用多层网络方法来处理多样化的药物和靶向相似性,并提出了一个新颖的优化框架,称为多重相似性基于DEEPSWALK的矩阵分解(MDMF),以进行DTI预测。该框架统一了嵌入的产生和相互作用预测,药物的学习矢量表示以及目标不仅保留了所有超层和特定层特异性局部不变性的高阶接近性,而且还可以近似与其内部产品的相互作用。此外,我们开发了一种集成方法(MDMF2A),该方法集成了MDMF模型的两个实例化,优化了Precision-Recall曲线(AUPR)和接收器操作特征曲线(AUC)下的面积。关于现实世界DTI数据集的实证研究表明,我们的方法在四种不同的环境中对当前最新方法实现了统计学上的显着改善。此外,对高度排名的非相互作用对的验证也证明了MDMF2A发现新型DTI的潜力。
translated by 谷歌翻译
该药物发现​​和开发过程是一个漫长而昂贵的过程,每次药物平均耗资超过10亿美元,需要10 - 15年的时间。为了减少在整个过程中的高水平流失量,在最近十年中,越来越多地将机器学习方法应用于药物发现和发育的各个阶段,尤其是在最早鉴定可药物疾病基因的阶段。在本文中,我们开发了一种新的张量分解模型,以预测用于治疗疾病的潜在药物靶标(基因或蛋白质)。我们创建了一个三维数据张量,该数据张量由1,048个基因靶标,860个疾病和230,0111111111111111111111111111111的证据属性和临床结果,并使用从开放式目标和药物数据库中提取的数据组成。我们用从药物发现的知识图中学到的基因目标表示丰富了数据,并应用了我们提出的方法来预测看不见的基因靶标和疾病对的临床结果。我们设计了三种评估策略来衡量预测性能,并将几个常用的机器学习分类器与贝叶斯矩阵和张量分解方法进行了基准测试。结果表明,合并知识图嵌入可显着提高预测准确性,并与密集的神经网络一起训练张量分解优于所有其他基线。总而言之,我们的框架结合了两种积极研究的机器学习方法,用于疾病目标识别,即张量分解和知识图表示学习,这可能是在数据驱动的药物发现中进一步探索的有希望的途径。
translated by 谷歌翻译
不良事件是药物开发中的一个严重问题,并且已经开发了许多使用机器学习的预测方法。随机的拆分交叉验证是机器学习中模型构建和评估的事实上的标准,但是在不利事件预测中应注意,因为这种方法与现实世界的情况不符。使用时轴的时间拆分被认为适用于现实世界预测。但是,由于缺乏可比的研究,使用时间和随机分裂获得的模型性能差异尚不清楚。为了了解差异,我们使用九种类型的复合信息作为输入,八个不良事件作为目标和六种机器学习算法比较了时间和随机分裂之间的模型性能。在曲线值下,随机分裂显示的面积比八个目标中的六个时间分配比分裂更高。训练和测试数据集的化学空间相似,这表明适用性域的概念不足以解释从分裂中得出的差异。对于蛋白质相互作用,曲线差异下的面积比其他数据集更小。随后的详细分析表明,在时间分配时间内使用基于知识的信息的危险。这些发现表明,在不利事件预测中了解时间和随机分裂之间的差异的重要性,并强烈表明适当使用分裂策略和结果的解释对于不利事件的现实预测是必要的。我们提供本研究中使用的分析代码和数据集(https://github.com/mizuno-group/ae_prediction)。
translated by 谷歌翻译
The discovery of drug-target interactions (DTIs) is a pivotal process in pharmaceutical development. Computational approaches are a promising and efficient alternative to tedious and costly wet-lab experiments for predicting novel DTIs from numerous candidates. Recently, with the availability of abundant heterogeneous biological information from diverse data sources, computational methods have been able to leverage multiple drug and target similarities to boost the performance of DTI prediction. Similarity integration is an effective and flexible strategy to extract crucial information across complementary similarity views, providing a compressed input for any similarity-based DTI prediction model. However, existing similarity integration methods filter and fuse similarities from a global perspective, neglecting the utility of similarity views for each drug and target. In this study, we propose a Fine-Grained Selective similarity integration approach, called FGS, which employs a local interaction consistency-based weight matrix to capture and exploit the importance of similarities at a finer granularity in both similarity selection and combination steps. We evaluate FGS on five DTI prediction datasets under various prediction settings. Experimental results show that our method not only outperforms similarity integration competitors with comparable computational costs, but also achieves better prediction performance than state-of-the-art DTI prediction approaches by collaborating with conventional base models. Furthermore, case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.
translated by 谷歌翻译
在2019年的大流行病(Covid-19)感染SARS-COV-2的小型冠状病病(Covid-19)中,很快就迅速进行了大量的预防和治疗药物研究,但迄今为止,这些努力取得了不成功。我们的目标是利用药物重新淘点的管道优先考虑可重复的药物,系统地整合多个SARS-COV-2和药物相互作用,深图神经网络和基于体外/人口的验证。我们首先通过CTDBase收集涉及Covid-19患者治疗的所有可用药物(n = 3,635)。我们基于病毒诱饵,宿主基因,途径,药物和表型之间的相互作用构建了SARS-COV-2知识图。基于生物相互作用,使用深图神经网络方法来得出候选表示。我们利用临床试验验证药物优先考虑候选药物,然后用它们的遗传谱,体外实验疗效和电子健康记录验证。我们突出了前22名药物,包括阿奇霉素,阿托伐他汀,阿司匹林,对乙酰氨基酚和阿巴替代醇。我们进一步确定了可能协同靶向Covid-19的药物组合。总之,我们证明了广泛的相互作用,深度神经网络和严格验证的整合可以促进Covid-19治疗的候选药物的快速鉴定。这是一个post-poser-review,在科学报告中发布的文章的Pre-Copyedit版本最终经过身份验证版本可在线获取:https://www.researchsquare.com/article/rs-114758/v1
translated by 谷歌翻译
计算药物重新定位旨在发现销售药物的新治疗疾病,与传统药物开发相比,成本低,开发周期较低,可控性高的优点。由于其易于实现和优异的可扩展性,矩阵分解模型已成为计算药物重新定位的基石技术。然而,矩阵分解模型使用内在产品来表示药物和疾病之间的关联,这缺乏表达能力。此外,在其各自的潜在因子载体上不能暗示药物或疾病的相似性,这不满足常见的药物发现感。因此,在这项工作中提出了用于计算药物重新定位的神经度量分解模型(NMF)。我们新建了药物和疾病的潜在因子载体作为高维坐标系的点,提出了一种广义的欧氏距离,以代表药物和疾病之间的关联,以补偿内部产品的缺点。此外,通过将多种药物(疾病)指标信息嵌入到潜在因子向量的编码空间中,可以反映出药物(疾病)之间的相似性的信息反映在潜在因子向量之间的距离中。最后,我们对两个真实数据集进行了广泛的分析实验,以证明上述改进点和NMF模型的优越性的有效性。
translated by 谷歌翻译
刺激:鉴定药物靶标相互作用(DTIS)是药物重新定位的关键步骤。近年来,大量基因组学和药理学数据的积累已经形成了大众药物和目标相关的异构网络(HNS),这提供了开发基于HN的计算模型的新机遇,以准确地预测DTI。 HN意味着许多有关DTI的有用信息,还包含无关的数据,以及如何使最佳的异构网络仍然是一个挑战。结果:在本文中,我们提出了一种基于异构的图形自动元路径学习的DTI预测方法(Hampdti)。 Hampdti从HN自动学习药物和目标之间的重要元路径,并产生元路径图。对于每个元路径图,从药物分子图和靶蛋白序列中学习的特征用作节点属性,然后设计了有效地考虑节点类型信息(药物或目标)的节点类型特定图卷积网络(NSGCN)学习药物和目标的嵌入。最后,组合来自多个元路径图的嵌入式以预测新的DTI。基准数据集的实验表明,与最先进的DTI预测方法相比,我们提出的Hampdti实现了卓越的性能。更重要的是,Hampdti识别DTI预测的重要元路径,这可以解释药物如何与HNS中的目标连接。
translated by 谷歌翻译
预测药物 - 药物相互作用(DDI)是使用药物信息和许多对的已知副作用预测一对药物的副作用(不需要的结果)的问题。该问题可以制定为DDI图中每对节点的预测标签(即副作用),其中节点是药物,边缘是用已知标记的相互作用的药物。本问题的最先进方法是图形神经网络(GNN),其利用图中的邻居信息来学习节点表示。然而,对于DDI而言,由于副作用的性质,有许多具有复杂关系的标签。通常的GNN经常将标签固定为不反映标签关系的单热量矢量,并且可能在困难的难度标签中没有获得最高性能。在本文中,我们将DDI标准为一个超图,其中每个HINFEGE是三重:用于药物的两个节点和标签的一个节点。然后,我们呈现CentsMoothie,一个超图神经网络,它通过新颖的中央平滑制剂完全了解节点和标签的表示。我们经验展示了模拟中的CentsMoothie的性能优势以及真实数据集。
translated by 谷歌翻译
计算药物重新定位技术是加速药物开发的有效工具。虽然近几十年来这种技术已被广泛使用和成功,但许多现有模型仍然遭受多种缺点,例如矩阵分解模型中的大量未经验证的药物疾病关联和内部产品。这些作品的局限性主要是由于以下两个原因:首先,以前的作品使用负面采样技术将未经验证的毒性疾病关联视为负样本,在现实世界中无效;其次,内部产品缺乏对潜在因子的尺寸之间的交叉信息的建模。在本文中,我们提出了一种用于解决上述缺陷的小说框架,其模拟使用验证和未经验证的毒品疾病关联的毒性疾病关联的联合分布,而无需采用负面采样技术。 PUOS还使用外部产品操作建模了药物和疾病潜在因子的交叉信息。为了全面的比较,我们考虑了7个普遍的基线。两个现实世界数据集中的广泛实验表明,基于6个流行评估指标取得了最佳性能。
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
学习到级别是一种广泛用于信息检索的机器学习技术,最近已应用于基于配体的虚拟筛查问题,以加速新药开发的早期阶段。排名预测模型根据序数关系学习,使其适合从各种环境中集成测定数据。现有的化合物筛选中排名预测的研究通常使用了一种名为RankSVM的学习对方法。但是,尚未将它们与梯度提升决策树(GBDT)基于梯度的学习对级别的方法进行比较或验证,这些方法最近越来越受欢迎。此外,尽管称为归一化折扣累积增益(NDCG)的排名指标被广泛用于信息检索,但它仅确定预测是否比其他模型的预测更好。换句话说,NDCG无法识别何时预测模型比随机结果差。然而,NDCG仍用于使用学习级学习的化合物筛选的性能评估。这项研究使用了具有排名损失函数的GBDT模型,称为Lambdarank和Lambdaloss,用于基于配体的虚拟筛选。使用回归将结果与现有的RankSVM方法和GBDT模型进行比较。我们还提出了一个新的排名指标,标准化的富集折扣累积增益(NEDCG),旨在正确评估排名预测的好处。结果表明,使用GBDT和RankSVM在不同数据集上的GBDT模型优于现有的回归方法。此外,NEDCG表明,回归预测与多户多户数据集中的随机预测相当,这证明了其对更直接评估复合筛选性能的有用性。
translated by 谷歌翻译
生物医学网络上的自我监督的代表学习(SSL)为药物发现提供了新的机会,这些机会缺乏可用的生物或临床表型。但是,如何有效地结合多个SSL模型是具有挑战性的并且很少探索。因此,我们提出了对药物发现的生物医学网络的自我监督代表学习的多任务联合策略,命名为MSSL2DRUG。我们设计了六种基本的SSL任务,这些任务受到各种方式特征,包括生物医学异构网络中的结构,语义和属性,包括结构,语义和属性。此外,通过两种药物发现场景中的基于图表的对抗的对抗性多任务学习框架评估了多份任务的十五个组合。结果表明了两个重要的发现。 (1)与其他多任务联合策略相比,多模式任务的组合实现了最佳性能。 (2)本地和全球SSL任务的联合培训比随机任务组合产生更高的性能。因此,我们猜想多式联运和本地全球组合策略可以被视为多任务SSL对药物发现的指导。
translated by 谷歌翻译
病毒感染导致全世界的显着发病率和死亡率。理解特定病毒和人类蛋白质之间的相互作用模式在揭示病毒感染和发病机制的潜在机制方面发挥着至关重要的作用。这可以进一步帮助预防和治疗病毒相关疾病。然而,由于病毒 - 人类相互作用的稀缺数据和大多数病毒的快速突变率,预测新病毒和人体细胞之间的蛋白质 - 蛋白质相互作用的任务是非常挑战性的。我们开发了一种多任务转移学习方法,利用人类互乱组约2400万蛋白序列和相互作用模式的信息来解决小型训练数据集的问题。除了使用手工制作的蛋白质特征,而不是通过深语模型方法从巨大的蛋白质序列来源学习的统计学上丰富的蛋白质表示。此外,我们采用了额外的目的,旨在最大限度地提高观察人蛋白质蛋白质相互作用的可能性。这一附加任务目标充当规律器,还允许纳入域知识来告知病毒 - 人蛋白质 - 蛋白质相互作用预测模型。我们的方法在13个基准数据集中实现了竞争力,以及SAR-COV-2病毒受体的案例研究。实验结果表明,我们所提出的模型有效地用于病毒 - 人和细菌 - 人蛋白质 - 蛋白质 - 蛋白质相互作用预测任务。我们分享我们的重复性和未来研究代码,以便在https://git.l3s.uni-hannover.de/dong/multitastastastastastastastastastask-transfer。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
分子机器学习的最新进展,特别是深度神经网络,如图形神经网络(GNNS),用于预测结构活动关系(SAR)在计算机辅助药物发现中表达了巨大的潜力。然而,这种深神经网络的适用性受到大量培训数据的限制。为了应对目标任务的有限培训数据,最近已采用对SAR建模的转移学习,从而利用相关任务数据的信息。在这项工作中,与最流行的基于参数的转移学习相比,诸如预先估计的基于流行的传输学习,我们开发了新颖的深度传输学习方法TAC和TAC-FC来利用源域数据并将有用信息传送到目标域。 TAC学习生成可以从一个域概括到另一个域的有效分子特征,并提高目标域中的分类性能。另外,TAC-FC通过掺入新的组分来选择性地学习特征和化合物方识的可转移性来延伸TAC。我们使用来自Pubchem的生物测定筛选数据,并确定了120对生物测定,使得与其无活性化合物相比,每对的活性化合物彼此更类似。总的来说,TAC实现了平均Roc-AUC的最佳性能为0.801;与最佳基线FCN-DMPNA(DT)相比,它显着提高了83%的目标任务的83%的目标任务,平均任务明智的性能提高为7.102%。我们的实验清楚地表明TAC在大量目标任务中对所有基线实现了重大改进。此外,尽管与TAC相比,TAC-FC略微较差的ROC-AUC(0.798 VS 0.801),但与其他方法相比,TAC-FC仍然在PR-AUC和F1方面实现了更好的性能。
translated by 谷歌翻译
药物 - 药物相互作用(DDIS)可能会阻碍药物的功能,在最坏的情况下,它们可能导致不良药物反应(ADR)。预测所有DDI是一个具有挑战性且关键的问题。大多数现有的计算模型都集成了来自不同来源的药物中心信息,并利用它们作为机器学习分类器中的功能来预测DDIS。但是,这些模型有很大的失败机会,尤其是对于所有信息都没有可用的新药。本文提出了一个新型的HyperGraph神经网络(HYGNN)模型,仅基于用于DDI预测问题的任何药物的微笑串。为了捕获药物的相似性,我们创建了从微笑字符串中提取的药物的化学子结构中创建的超图。然后,我们开发了由新型的基于注意力的超图边缘编码器组成的HYGNN,以使药物的表示形式和解码器,以预测药物对之间的相互作用。此外,我们进行了广泛的实验,以评估我们的模型并将其与几种最新方法进行比较。实验结果表明,我们提出的HYGNN模型有效地预测了DDI,并以最大的ROC-AUC和PR-AUC分别超过基准,分别为97.9%和98.1%。
translated by 谷歌翻译
对于大型小分子的大型库,在考虑一系列疾病模型,测定条件和剂量范围时,详尽的组合化学筛选变得不可行。深度学习模型已实现了硅的最终技术,以预测协同得分。但是,药物组合的数据库对协同剂有偏见,这些结果不一定会概括分布不足。我们采用了使用深度学习模型的顺序模型优化搜索来快速发现与癌细胞系相比的协同药物组合,而与详尽的评估相比,筛查要少得多。在仅3轮ML引导的体外实验(包括校准圆圈)之后,我们发现,对高度协同组合进行了查询的一组药物对。进行了另外两轮ML引导实验,以确保趋势的可重复性。值得注意的是,我们重新发现药物组合后来证实将在临床试验中研究。此外,我们发现仅使用结构信息生成的药物嵌入开始反映作用机理。
translated by 谷歌翻译
The development of deep neural networks has improved representation learning in various domains, including textual, graph structural, and relational triple representations. This development opened the door to new relation extraction beyond the traditional text-oriented relation extraction. However, research on the effectiveness of considering multiple heterogeneous domain information simultaneously is still under exploration, and if a model can take an advantage of integrating heterogeneous information, it is expected to exhibit a significant contribution to many problems in the world. This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study and realizes relation extraction utilizing heterogeneous domain information. First, a deep neural relation extraction model is prepared and its attention mechanism is analyzed. Next, a method to combine the drug molecular structure information and drug description information to the input sentence information is proposed, and the effectiveness of utilizing drug molecular structures and drug descriptions for the relation extraction task is shown. Then, in order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected from multiple existing databases and a new data set in the form of a knowledge graph (KG) is constructed. A link prediction task on the constructed data set is conducted to obtain embedding representations of drugs that contain the heterogeneous domain information. Finally, a method that integrates the input sentence information and the heterogeneous KG information is proposed. The proposed model is trained and evaluated on a widely used data set, and as a result, it is shown that utilizing heterogeneous domain information significantly improves the performance of relation extraction from the literature.
translated by 谷歌翻译