在本文中,我们探讨了一个新的知识障碍问题,称为联合选择性聚合(FEDSA)。 FEDSA的目的是在几位分散的教师的帮助下培训学生模型,以完成一项新任务,他们的预培训任务和数据是不同且不可知的。我们调查此类问题设置的动机源于最近的模型共享困境。许多研究人员或机构已经在培训大型且称职的网络上花费了巨大的资源。由于隐私,安全或知识产权问题,他们也无法分享自己的预培训模型,即使他们希望为社区做出贡献。拟议的FEDSA提供了解决这一困境的解决方案,并使其更进一步,因为学识渊博的学生可以专门从事与所有老师不同的新任务。为此,我们提出了一种处理FEDSA的专门战略。具体而言,我们的学生培训过程是由一种新型的基于显着性的方法驱动的,该方法可以适应教师作为参与者,并将其代表性能力融入到学生中。为了评估FEDSA的有效性,我们在单任务和多任务设置上进行实验。实验结果表明,FEDSA有效地将分散模型的知识融合在一起,并将竞争性能达到集中式基准。
translated by 谷歌翻译
一方(服务器)培训的检测模型可能会在分发给其他用户(客户)时面临严重的性能降解。例如,在自主驾驶场景中,不同的驾驶环境可能会带来明显的域移动,从而导致模型预测的偏见。近年来出现的联合学习可以使多方合作培训无需泄漏客户数据。在本文中,我们专注于特殊的跨域场景,其中服务器包含大规模数据,并且多个客户端仅包含少量数据。同时,客户之间的数据分布存在差异。在这种情况下,传统的联合学习技术不能考虑到所有参与者的全球知识和特定客户的个性化知识的学习。为了弥补这一限制,我们提出了一个跨域联合对象检测框架,名为FedOD。为了同时学习不同领域的全球知识和个性化知识,拟议的框架首先执行联合培训,以通过多教老师蒸馏获得公共全球汇总模型,并将汇总模型发送给每个客户端以供应其个性化的个性化模型本地模型。经过几轮沟通后,在每个客户端,我们可以对公共全球模型和个性化本地模型进行加权合奏推理。通过合奏,客户端模型的概括性能可以胜过具有相同参数量表的单个模型。我们建立了一个联合对象检测数据集,该数据集具有基于多个公共自主驾驶数据集的显着背景差异和实例差异,然后在数据集上进行大量实验。实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed~(Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data heterogeneity and system/resource heterogeneity. Hence, we propose \underline{R}esource-\underline{a}ware \underline{F}ederated \underline{L}earning~(RaFL) to address these challenges. RaFL allocates resource-aware models to edge devices using Neural Architecture Search~(NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Integrating NAS into FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
translated by 谷歌翻译
鉴于机器学习环境快速变化和昂贵的数据标记,当来自源域的标记数据与目标域的部分标记的数据在统计上不同时,必须进行半监督域的适应(SSDA)。大多数先前的SSDA研究都在集中进行,需要访问源和目标数据。但是,如今许多字段中的数据是由分布式终端设备生成的。由于隐私问题,数据可能是本地存储的,无法共享,从而导致现有SSDA研究的无效性。本文提出了一种创新的方法,以通过联合半监督域适应(FSSDA)命名的多个分布式和机密数据集实现SSDA。 FSSDA基于战略设计的知识蒸馏技术将SSDA与联合学习集成在一起,通过并行执行源和目标培训来提高效率。此外,FSSDA通过正确选择关键参数(即模仿参数)来控制跨域传输的知识量。此外,建议的FSSDA可以有效地推广到多源域适应方案。进行了广泛的实验,以证明FSSDA设计的有效性和效率。
translated by 谷歌翻译
联合学习(FL)是以隐私性的方式从分散数据培训全球模型的重要范例。现有的FL方法通常假定可以对任何参与客户端进行培训。但是,在实际应用中,客户的设备通常是异质的,并且具有不同的计算能力。尽管像伯特这样的大型模型在AI中取得了巨大的成功,但很难将它们应用于弱客户的异质FL。直接的解决方案(例如删除弱客户端或使用小型模型适合所有客户端)将带来一些问题,例如由于数据丢失或有限的模型表示能力而导致的掉落客户端的代表性不足和劣等精度。在这项工作中,我们提出了一种包含客户的联合学习方法,以解决此问题。包容性FL的核心思想是将不同尺寸的模型分配给具有不同计算功能的客户,为功能强大的客户提供的较大模型以及针对弱客户的较小客户。我们还提出了一种有效的方法,可以在多个具有不同大小的本地模型之间共享知识。这样,所有客户都可以参与FL中的模型学习,最终模型可以足够大。此外,我们提出了一种动量知识蒸馏方法,以更好地转移强大客户的大型模型中的知识,向弱客户的小型模型。在许多实际基准数据集上进行的广泛实验证明了该方法在FL框架下使用异质设备的客户学习准确模型的有效性。
translated by 谷歌翻译
近年来,个性化联邦学习(PFL)引起了越来越关注其在客户之间处理统计异质性的潜力。然而,最先进的PFL方法依赖于服务器端的模型参数聚合,这需要所有模型具有相同的结构和大小,因此限制了应用程序以实现更多异构场景。要处理此类模型限制,我们利用异构模型设置的潜力,并提出了一种新颖的培训框架,为不同客户使用个性化模型。具体而言,我们将原始PFL中的聚合过程分为个性化组知识转移训练算法,即KT-PFL,这使得每个客户端能够在服务器端维护个性化软预测以指导其他人的本地培训。 KT-PFL通过使用知识系数矩阵的所有本地软预测的线性组合更新每个客户端的个性化软预测,这可以自适应地加强拥有类似数据分布的客户端之间的协作。此外,为了量化每个客户对他人的个性化培训的贡献,知识系数矩阵是参数化的,以便可以与模型同时培训。知识系数矩阵和模型参数在每轮梯度下降方式之后的每一轮中可替代地更新。在不同的设置(异构模型和数据分布)下进行各种数据集(EMNIST,Fashion \ _Mnist,CIFAR-10)的广泛实验。据证明,所提出的框架是第一个通过参数化群体知识转移实现个性化模型培训的联邦学习范例,同时实现与最先进的算法比较的显着性能增益。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
联合学习(FL)是一种机器学习范式,本地节点在培训数据保持分散时进行了协作训练中心模型。现有的FL方法通常共享模型参数或采用共同依据来解决不平衡数据分布的问题。但是,他们患有沟通瓶颈。更重要的是,他们有隐私泄漏的风险。在这项工作中,我们在FL框架中开发了一种隐私和沟通高效方法,并使用未标记的跨域公共数据进行单次离线知识蒸馏。我们提出了一个量化的和嘈杂的本地预测合奏,从经过全面训练的本地模型中,以确保更强的隐私保证而无需牺牲准确性。基于有关图像分类和文本分类任务的广泛实验,我们表明,我们的隐私方法优于基线FL算法,其精度和沟通效率都具有出色的性能。
translated by 谷歌翻译
随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
本文提出了一种有效的联邦蒸馏学习系统(EFDLS),用于多任务时间序列分类(TSC)。 EFDL由中央服务器和多个移动用户组成,不同的用户可能运行不同的TSC任务。 EFDLS有两种新型组件,即基于特征的学生 - 教师(FBST)框架和基于距离的权重匹配(DBWM)方案。在每个用户中,FBST框架通过知识蒸馏将教师隐藏层的知识转移到学生的隐藏层,与具有相同网络结构的教师和学生。对于每个连接的用户,其学生模型的隐藏层的权重定期上传到EFDLS服务器。 DBWM方案部署在服务器上,具有最小的方距离,用于测量两个给定模型的权重之间的相似性。该方案为每个连接的用户找到合作伙伴,使得用户及其伴侣的权重是上载的所有权重中最接近的权重。服务器交换并将其伙伴的权重发送给这两个用户,然后将所接收的权重加载到其教师隐藏的层。实验结果表明,所提出的EFDLS在一组选择的UCR2018数据集上实现了卓越的性能,这是一个精度的精度。
translated by 谷歌翻译
在现实世界应用中,联合学习(FL)遇到了两个挑战:(1)可伸缩性,尤其是应用于大型物联网网络时; (2)如何使用异质数据对环境进行健全。意识到第一个问题,我们旨在设计一个名为Full-Stack FL(F2L)的新型FL框架。更具体地说,F2L使用层次结构架构,使扩展FL网络可以访问而无需重建整个网络系统。此外,利用层次网络设计的优势,我们在全球服务器上提出了一种新的标签驱动知识蒸馏(LKD)技术来解决第二个问题。与当前的知识蒸馏技术相反,LKD能够训练学生模型,该模型由所有教师模型的良好知识组成。因此,我们提出的算法可以有效地提取区域数据分布(即区域汇总模型)的知识,以减少客户在使用非独立分布数据的FL系统下操作时客户模型之间的差异。广泛的实验结果表明:(i)我们的F2L方法可以显着提高所有全球蒸馏的总体FL效率,并且(ii)F2L随着全球蒸馏阶段的发生而迅速达到收敛性,而不是在每个通信周期中提高。
translated by 谷歌翻译
在过去的十年中,许多深入学习模型都受到了良好的培训,并在各种机器智能领域取得了巨大成功,特别是对于计算机视觉和自然语言处理。为了更好地利用这些训练有素的模型在域内或跨域转移学习情况下,提出了知识蒸馏(KD)和域适应(DA)并成为研究亮点。他们旨在通过原始培训数据从训练有素的模型转移有用的信息。但是,由于隐私,版权或机密性,原始数据并不总是可用的。最近,无数据知识转移范式吸引了吸引人的关注,因为它涉及从训练有素的模型中蒸馏宝贵的知识,而无需访问培训数据。特别是,它主要包括无数据知识蒸馏(DFKD)和源无数据域适应(SFDA)。一方面,DFKD旨在将域名域内知识从一个麻烦的教师网络转移到一个紧凑的学生网络,以进行模型压缩和有效推论。另一方面,SFDA的目标是重用存储在训练有素的源模型中的跨域知识并将其调整为目标域。在本文中,我们对知识蒸馏和无监督域适应的视角提供了全面的数据知识转移,以帮助读者更好地了解目前的研究状况和想法。分别简要审查了这两个领域的应用和挑战。此外,我们对未来研究的主题提供了一些见解。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译
在本文中,我们探讨了一项新颖而雄心勃勃的知识转移任务,称为知识分解〜(KF)。 KF的核心思想在于知识的模块化和组装性:鉴于验证的网络模型作为输入,KF旨在将其分解为多个因素网络,每个网络仅处理专用任务,并从源中维护特定于任务的知识,并从源网络。此类因素网络是由任务分开的,可以直接组装,而无需进行任何微调,以产生更有能力的组合任务网络。换句话说,因子网络用作像乐高积木一样的构建块,使我们能够以插件的方式构建自定义网络。具体而言,每个因素网络都包含两个模块,这是一个通用知识模块,该模块是任务无关并由所有因素网络共享的模块,以及一个专门针对因子网络本身的任务特定模块。我们介绍了一个信息理论目标,即Infomax-Bottleneck〜(IMB),以通过优化学习表示和输入之间的相互信息来执行KF。各种基准的实验表明,派生因子网络不仅在专用任务,而且还可以分离,同时享有更好的解释性和模块化。此外,学到的公共知识表示会为转移学习带来令人印象深刻的结果。
translated by 谷歌翻译
基础模型不是模型生产管道的最后一章。以少数数据以少数数据传输到数千个下游任务正在成为基础模型的应用的趋势。在本文中,我们提出了一个通用转移框架:一个传输所有(OTA),将任何视觉基础模型(VFM)转移到具有少数下游数据的下游任务。我们首先通过图像重新表示微调(IRF)将VFM传输到特定于任务特定模型,然后将知识从特定于任务的模型蒸馏到部署的模型,其中包含由下游图像引导的生成(DIGG)产生的数据。OTA在传输时没有对上游数据,VFM和下游任务的依赖性。它还为VFM研究人员提供了一种方法,以释放其上游信息,以便更好地转移,但由于隐私要求而没有泄漏数据。大规模实验在少数数据设置中验证我们方法的有效性和优越性。我们的代码将被释放。
translated by 谷歌翻译
对于大多数现有的联合学习算法,每一轮都包括最大程度地减少每个客户端的损失功能,以在客户端学习最佳模型,然后在服务器上汇总这些客户端模型。客户端的模型参数的点估计并未考虑到每个客户端估计的模型中的不确定性。但是,在许多情况下,尤其是在有限的数据设置中,考虑到客户模型中的不确定性以实现更准确和健壮的预测是有益的。不确定性还为其他重要任务提供了有用的信息,例如主动学习和分布(OOD)检测。我们提出了一个贝叶斯联合学习的框架,每个客户都使用其培训数据侵入后验预测分布,并提出各种方法,以在服务器上汇总这些特定于客户端的预测分布。由于交流和汇总预测分布可能具有挑战性且昂贵,因此我们的方法基于将每个客户的预测分布提炼成一个深层的神经网络。这使我们能够利用标准联合学习的进步,也可以为贝叶斯联邦学习。与最近试图估算每个客户模型不确定性的最近作品不同,我们的工作也没有做出任何限制性假设,例如客户后分布的形式。我们评估了我们在联合环境中的分类方法,以及在联邦设置中的积极学习和OOD检测,我们的方法在其上优于各种现有的联合学习基线。
translated by 谷歌翻译
知识蒸馏在模型压缩方面取得了显着的成就。但是,大多数现有方法需要原始的培训数据,而实践中的实际数据通常是不可用的,因为隐私,安全性和传输限制。为了解决这个问题,我们提出了一种有条件的生成数据无数据知识蒸馏(CGDD)框架,用于培训有效的便携式网络,而无需任何实际数据。在此框架中,除了使用教师模型中提取的知识外,我们将预设标签作为额外的辅助信息介绍以培训发电机。然后,训练有素的发生器可以根据需要产生指定类别的有意义的培训样本。为了促进蒸馏过程,除了使用常规蒸馏损失,我们将预设标签视为地面真理标签,以便学生网络直接由合成训练样本类别监督。此外,我们强制学生网络模仿教师模型的注意图,进一步提高了其性能。为了验证我们方法的优越性,我们设计一个新的评估度量称为相对准确性,可以直接比较不同蒸馏方法的有效性。培训的便携式网络通过提出的数据无数据蒸馏方法获得了99.63%,99.07%和99.84%的CIFAR10,CIFAR100和CALTECH101的相对准确性。实验结果表明了所提出的方法的优越性。
translated by 谷歌翻译
将知识蒸馏应用于个性化的跨筒仓联合学习,可以很好地减轻用户异质性的问题。然而,这种方法需要一个代理数据集,这很难在现实世界中获得。此外,基于参数平均的全球模型将导致用户隐私的泄漏。我们介绍了一个分布式的三位玩家GaN来实现客户之间的DataFree共蒸馏。该技术减轻了用户异质性问题,更好地保护用户隐私。我们证实,GaN产生的方法可以使联合蒸馏更有效和稳健,并且在获得全球知识的基础上,共蒸馏可以为各个客户达到良好的性能。我们对基准数据集的广泛实验证明了与最先进的方法的卓越的泛化性能。
translated by 谷歌翻译
联邦学习(FL)旨在以隐私的方式从大规模的分散设备中学习联合知识。但是,由于高质量标记的数据需要昂贵的人类智能和努力,因此带有错误标签的数据(称为嘈杂标签)无处不在,实际上不可避免地会导致性能退化。尽管提出了许多直接处理嘈杂标签的方法,但这些方法要么需要过多的计算开销,要么违反FL的隐私保护原则。为此,我们将重点放在FL上,目的是减轻嘈杂标签所产生的性能退化,同时保证数据隐私。具体而言,我们提出了一种局部自我调节方法,该方法通过隐式阻碍模型记忆噪声标签并明确地缩小了使用自我蒸馏之间的原始实例和增强实例之间的模型输出差异,从而有效地规范了局部训练过程。实验结果表明,我们提出的方法可以在三个基准数据集上的各种噪声水平中获得明显的抵抗力。此外,我们将方法与现有的最新方法集成在一起,并在实际数据集服装1M上实现卓越的性能。该代码可在https://github.com/sprinter1999/fedlsr上找到。
translated by 谷歌翻译