我们考虑了两种用于培训部分个性化模型的联合学习算法,共享和个人参数在设备上同时或交替更新。文献中已经提出了两种算法,但是它们的收敛性能尚未完全理解,尤其是对于交替的变体。我们提供一般非coNVEX设置中两种算法的收敛分析,并部分参与,并描述一个算法,其中一个算法是另一个算法。我们对现实世界图像,文本和语音数据集的实验表明,(a)部分个性化可以通过一小部分个人参数获得完整模型个性化的大部分好处,并且(b)交替的更新算法通常优于表现。同时更新算法,略有但一致的边距。
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FEDAVG) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including ADAGRAD, ADAM, and YOGI, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
translated by 谷歌翻译
众所周知,客户师沟通可能是联邦学习中的主要瓶颈。在这项工作中,我们通过一种新颖的客户端采样方案解决了这个问题,我们将允许的客户数量限制为将其更新传达给主节点的数量。在每个通信回合中,所有参与的客户都会计算他们的更新,但只有具有“重要”更新的客户可以与主人通信。我们表明,可以仅使用更新的规范来衡量重要性,并提供一个公式以最佳客户参与。此公式将所有客户参与的完整更新与我们有限的更新(参与客户数量受到限制)之间的距离最小化。此外,我们提供了一种简单的算法,该算法近似于客户参与的最佳公式,该公式仅需要安全的聚合,因此不会损害客户的隐私。我们在理论上和经验上都表明,对于分布式SGD(DSGD)和联合平均(FedAvg),我们的方法的性能可以接近完全参与,并且优于基线,在参与客户均匀地采样的基线。此外,我们的方法与现有的减少通信开销(例如本地方法和通信压缩方法)的现有方法兼容。
translated by 谷歌翻译
Federated Averaging (FEDAVG) has emerged as the algorithm of choice for federated learning due to its simplicity and low communication cost. However, in spite of recent research efforts, its performance is not fully understood. We obtain tight convergence rates for FEDAVG and prove that it suffers from 'client-drift' when the data is heterogeneous (non-iid), resulting in unstable and slow convergence.As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the 'client-drift' in its local updates. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
在联合学习(FL)中,通过跨设备的模型更新进行合作学习全球模型的目的倾向于通过本地信息反对个性化的目标。在这项工作中,我们通过基于多准则优化的框架以定量的方式校准了这一权衡,我们将其作为一个受约束的程序进行了:设备的目标是其本地目标,它试图最大程度地减少在满足非线性约束的同时,以使其满足非线性约束,这些目标是其本地目标。量化本地模型和全局模型之间的接近度。通过考虑该问题的拉格朗日放松,我们开发了一种算法,该算法允许每个节点通过查询到一阶梯度Oracle将其Lagrangian的本地组件最小化。然后,服务器执行Lagrange乘法器上升步骤,然后进行Lagrange乘法器加权步骤。我们称这种实例化的原始偶对方法是联合学习超出共识($ \ texttt {fedBc} $)的实例。从理论上讲,我们确定$ \ texttt {fedBc} $以与最算好状态相匹配的速率收敛到一阶固定点,直到额外的错误项,取决于由于接近性约束而产生的公差参数。总体而言,该分析是针对非凸鞍点问题的原始偶对偶的方法的新颖表征。最后,我们证明了$ \ texttt {fedBc} $平衡了整个数据集(合成,MNIST,CIFAR-10,莎士比亚)的全球和本地模型测试精度指标,从而与艺术现状达到了竞争性能。
translated by 谷歌翻译
我们提出了一个新颖的框架,以研究异步联合学习优化,并在梯度更新中延迟。我们的理论框架通过引入随机聚合权重来表示客户更新时间的可变性,从而扩展了标准的FedAvg聚合方案,例如异质硬件功能。我们的形式主义适用于客户具有异质数据集并至少执行随机梯度下降(SGD)的一步。我们证明了这种方案的收敛性,并为相关最小值提供了足够的条件,使其成为联邦问题的最佳选择。我们表明,我们的一般框架适用于现有的优化方案,包括集中学习,FedAvg,异步FedAvg和FedBuff。这里提供的理论允许绘制有意义的指南,以设计在异质条件下的联合学习实验。特别是,我们在这项工作中开发了FedFix,这是FedAvg的新型扩展,从而实现了有效的异步联合训练,同时保留了同步聚合的收敛稳定性。我们在一系列实验上凭经验证明了我们的理论,表明异步FedAvg以稳定性为代价导致快速收敛,我们最终证明了FedFix比同步和异步FedAvg的改善。
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
我们提出了一种用于分布式培训神经网络模型的新型联合学习方法,其中服务器在每轮中随机选择的设备的子集之间编制协作。我们主要从通信角度查看联合学习问题,并允许更多设备级别计算来节省传输成本。我们指出了一个基本的困境,因为当地 - 设备水平的最低实证损失与全球经验损失的最小值不一致。与最近的事先有关的不同,尝试无所作用的最小化或利用用于并行化梯度计算的设备,我们为每轮的每个设备提出动态规范器,以便在极限中,全局和设备解决方案对齐。我们通过实证结果对真实的和合成数据以及我们的方案在凸和非凸面设置中导致有效培训的分析结果,同时对设备异质性完全不可知,以及大量设备,部分参与和不平衡的数据。
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译
Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional distributed optimization: (1) significant variability in terms of the systems characteristics on each device in the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks. FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art method for federated learning. While this re-parameterization makes only minor modifications to the method itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide convergence guarantees for our framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior relative to FedAvg-improving absolute test accuracy by 22% on average.
translated by 谷歌翻译
联合学习(FL)可从分散的隐私敏感数据中学习,并在Edge客户端进行原始数据的计算。本文介绍了混合FL,其中包含在协调服务器上计算出的附加损失项(同时维护FL的私人数据限制)。有很多好处。例如,可以利用其他数据中心数据从集中式(数据中心)共同学习,并分散(联合)培训数据,并更好地匹配预期的推断数据分布。混合FL还可以将一些密集的计算(例如,将正则化)卸载到服务器中,从而大大减少了通信和客户端计算负载。对于这些和其他混合FL用例,我们提出了三种算法:平行训练,1向梯度转移和2向梯度转移。我们陈述了每种融合界限,并提供适合特定混合FL问题的直觉。最后,我们对三个任务进行了广泛的实验,表明混合FL可以将训练数据融合以达到推理分布上的准确性,并可以将通信和计算开销降低90%以上。我们的实验证实了关于算法在不同的混合FL问题设置下的性能的理论预测。
translated by 谷歌翻译
In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译
联邦学习(FL)是大规模分布式学习的范例,它面临两个关键挑战:(i)从高度异构的用户数据和(ii)保护参与用户的隐私的高效培训。在这项工作中,我们提出了一种新颖的流动方法(DP-SCaffold)来通过将差异隐私(DP)约束结合到流行的脚手架算法中来解决这两个挑战。我们专注于有挑战性的环境,用户在没有任何可信中介的情况下与“诚实但奇怪的”服务器沟通,这需要确保隐私不仅可以访问最终模型的第三方,而且还要对服务器观察所有用户通信。使用DP理论的高级结果,我们建立了凸面和非凸面目标算法的融合。我们的分析清楚地突出了数据异质性下的隐私式折衷,并且当局部更新的数量和异质性水平增长时,展示了在最先进的算法DP-Fedivg上的DP-Scaffold的优越性。我们的数值结果证实了我们的分析,并表明DP-Scaffold在实践中提供了重大的收益。
translated by 谷歌翻译
大规模的机器学习系统通常涉及分布在用户集合中的数据。联合学习算法通过将模型更新传达给中央服务器而不是整个数据集来利用此结构。在本文中,我们研究了一个个性化联合学习设置的随机优化算法,涉及符合用户级别(联合)差异隐私的本地和全球模型。在学习私人全球模型的同时,促进了隐私成本,但本地学习是完全私人的。我们提供概括保证,表明与私人集中学习协调本地学习可以产生一种普遍有用和改进的精度和隐私之间的权衡。我们通过有关合成和现实世界数据集的实验来说明我们的理论结果。
translated by 谷歌翻译