Graph Machine Learning最近在学术界和行业中都引起了人们的关注。大多数图形机器学习模型,例如图形神经网络(GNN),都经过大量的图形数据训练。但是,在许多实际情况下,例如医疗保健系统中的住院预测,图形数据通常存储在多个数据所有者中,并且由于隐私问题和法规限制,任何其他方都无法直接访问。联合图机器学习(FGML)是一种有前途的解决方案,可以通过以联合方式训练图机学习模型来应对这一挑战。在这项调查中,我们对FGML文献进行了全面的综述。具体而言,我们首先提供了一种新的分类法,将FGML中的现有问题分为两个设置,即,\ emph {fl带有结构化数据}和\ emph {结构化的fl}。然后,我们回顾每种环境中的主流技术,并详细介绍它们如何应对FGML下的挑战。此外,我们总结了来自不同域中FGML的现实应用程序,并介绍FGML中采用的开放图数据集和平台。最后,我们在现有研究中提出了一些局限性,并在该领域的研究方向有前途的方向。
translated by 谷歌翻译
With its capability to deal with graph data, which is widely found in practical applications, graph neural networks (GNNs) have attracted significant research attention in recent years. As societies become increasingly concerned with the need for data privacy protection, GNNs face the need to adapt to this new normal. Besides, as clients in Federated Learning (FL) may have relationships, more powerful tools are required to utilize such implicit information to boost performance. This has led to the rapid development of the emerging research field of federated graph neural networks (FedGNNs). This promising interdisciplinary field is highly challenging for interested researchers to grasp. The lack of an insightful survey on this topic further exacerbates the entry difficulty. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a 2-dimensional taxonomy of the FedGNNs literature: 1) the main taxonomy provides a clear perspective on the integration of GNNs and FL by analyzing how GNNs enhance FL training as well as how FL assists GNNs training, and 2) the auxiliary taxonomy provides a view on how FedGNNs deal with heterogeneity across FL clients. Through discussions of key ideas, challenges, and limitations of existing works, we envision future research directions that can help build more robust, explainable, efficient, fair, inductive, and comprehensive FedGNNs.
translated by 谷歌翻译
联邦学习已成为不同领域培训机器学习模型的重要范式。对于诸如图形分类的图形级任务,图也可以被视为一种特殊类型的数据样本,可以收集并存储在单独的本地系统中。类似于其他域,多个本地系统,每个域每个保持一小集图,可以受益于协同训练强大的图形挖掘模型,例如流行的图形神经网络(GNN)。为了为这种努力提供更多的动机,我们分析了不同域的实际图形,以确认它们确实共享了与随机图纸相比统计上显着的某些图形属性。但是,我们还发现,即使来自同一个域或相同的数据集,也发现不同的图表是非IID,这对于图形结构和节点特征。为了处理这一点,我们提出了一种基于GNN的梯度的群集联合学习(GCFL)框架的图表集群联合学习(GCFL)框架,并且理论上可以证明这种群集可以减少本地系统所拥有的图形之间的结构和特征异质性。此外,我们观察到GNN的梯度在GCFL中强制波动,从而阻碍了高质量的聚类,并基于动态时间翘曲(GCFL +)设计了一种基于梯度序列的聚类机制。广泛的实验结果和深入分析证明了我们提出的框架的有效性。
translated by 谷歌翻译
在实际情况下,较大的全局图的子图可以分布在多个设备或机构之间,并且仅由于隐私限制而在本地访问,尽管它们之间可能存在链接。最近,拟议的子图联合学习(FL)方法涉及跨私人本地子图的那些缺失的链接,而分布式培训图形神经网络(GNN)。但是,他们忽略了子图中的不可避免的异质性,这是由包含全球图的不同部分的子图引起的。例如,一个子图可能属于较大的全局图中的一个社区之一。在这种情况下,天真的子图FL将从训练有异质图分布的本地GNN模型中崩溃不相容的知识。为了克服这样的局限性,我们引入了一个新的子图FL问题,即个性化的子图FL,该子图专注于相互关联的本地GNN模型的联合改进,而不是学习一个单一的全球GNN模型,并提出了一个新颖的框架,并提出了一个新型的框架,并提出了一个联合的个性化次级学习( Fed-pub),以解决它。个性化子图FL中的一个至关重要的挑战是服务器不知道每个客户端具有哪个子图。 Fed-pub因此使用随机图作为输入来计算它们之间的相似性,并使用它们执行对服务器端聚合的加权平均。此外,它在每个客户端学习一个个性化的稀疏掩码,以选择和更新聚合参数的子图相关子集。我们考虑了非重叠和重叠子图的六个数据集中的Fed-Pub在六个数据集上的子图FL性能,我们的基本上要优于相关的基线。
translated by 谷歌翻译
Federated learning has recently been applied to recommendation systems to protect user privacy. In federated learning settings, recommendation systems can train recommendation models only collecting the intermediate parameters instead of the real user data, which greatly enhances the user privacy. Beside, federated recommendation systems enable to collaborate with other data platforms to improve recommended model performance while meeting the regulation and privacy constraints. However, federated recommendation systems faces many new challenges such as privacy, security, heterogeneity and communication costs. While significant research has been conducted in these areas, gaps in the surveying literature still exist. In this survey, we-(1) summarize some common privacy mechanisms used in federated recommendation systems and discuss the advantages and limitations of each mechanism; (2) review some robust aggregation strategies and several novel attacks against security; (3) summarize some approaches to address heterogeneity and communication costs problems; (4)introduce some open source platforms that can be used to build federated recommendation systems; (5) present some prospective research directions in the future. This survey can guide researchers and practitioners understand the research progress in these areas.
translated by 谷歌翻译
现在,推荐系统已经变得繁荣,旨在通过学习嵌入来预测用户对项目的潜在兴趣。图形神经网络的最新进展〜(GNNS)还提供带有强大备份的推荐系统,从用户项图中学习嵌入。但是,由于数据收集困难,仅利用用户项交互遭受冷启动问题。因此,目前的努力建议将社交信息与用户项目相互作用融合以缓解它,这是社会推荐问题。现有工作使用GNNS同时聚合两个社交链接和用户项交互。但是,它们都需要集中存储的社交链接和用户的互动,从而导致隐私问题。此外,根据严格的隐私保护,在一般数据保护规则下,将来可能不可行的数据存储可能是不可行的,敦促分散的社会建议框架。为此,我们设计了一个小说框架\ textbf {fe} delated \ textbf {so} cial推荐与\ textbf {g} raph神经网络(fesog)。首先,FeSog采用关系的关注和聚集来处理异质性。其次,Fesog Infers使用本地数据来保留个性化的用户嵌入。最后但并非最不重要的是,所提出的模型采用伪标签技术,其中包含项目采样,以保护隐私和增强培训。三个现实世界数据集的广泛实验可以证明FeSog在完成社会建议和隐私保护方面的有效性。我们是为我们所知,为社会建议提供联邦学习框架的第一项工作。
translated by 谷歌翻译
作为包含结构和特征信息的特殊信息载体,图被广泛用于图挖掘中,例如图形神经网络(GNNS)。但是,在某些实际情况下,图形数据分别存储在多个分布式各方中,由于利益冲突,可能不会直接共享。因此,提出了联合图神经网络来解决此类数据孤岛问题,同时保留各方(或客户)的隐私。然而,各方之间的不同图形数据分布(称为统计异质性)可能会降低诸如fedAvg之类的幼稚联合学习算法的性能。在本文中,我们提出了一个基于自我图形的联合图形学习框架Fedego,以应对上述挑战,每个客户将在此培训其本地模型,同时也为全球模型的培训做出贡献。 Fedego应用图形上的自我图形来充分利用结构信息,并利用混音来实现隐私问题。为了处理统计异质性,我们将个性化整合到学习中,并提出一种自适应混合系数策略,使客户能够实现最佳个性化。广泛的实验结果和深入分析证明了联邦的有效性。
translated by 谷歌翻译
联合学习(FL)的令人难以置信的发展使计算机视觉和自然语言处理领域的各种任务受益,而现有的TFF和FATE等现有框架使在现实应用程序中的部署变得容易。但是,即使图形数据很普遍,联合图形学习(FGL)由于其独特的特征和要求而没有得到很好的支持。缺乏与FGL相关的框架增加了完成可再现研究和在现实世界应用中部署的努力。在本文中,我们首先讨论了创建易于使用的FGL软件包的挑战,因此提出了我们实施的FederatedScope-GNN(FS-G)的包裹,该软件包提供了(1)统一的模块化视图并表达FGL算法; (2)用于开箱即用的FGL功能的综合数据和模型; (3)有效的模型自动调整组件; (4)现成的隐私攻击和防御能力。我们通过进行广泛的实验来验证FS-G的有效性,该实验同时获得了许多有关FGL的宝贵见解。此外,我们采用FS-G在现实世界中的电子商务方案中为FGL应用程序提供服务,在该场景中获得的改进表明了巨大的潜在业务利益。我们在https://github.com/alibaba/federatedscope上公开发布FS-G,作为FederatedScope的子模型,以促进FGL的研究,并启用由于缺乏专用包装而无法无视的广泛应用。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
由于其在分布式机器学习中的隐私保护,联邦学习引起了很多研究。然而,联合学习的现有工作主要侧重于卷积神经网络(CNN),其无法有效处理在许多应用中流行的图形数据。图表卷积网络(GCN)已被提出为图表学习最有前途的技术之一,但其联邦设置很少探索。在本文中,我们提出了在多个计算客户端之间的联合图学习的FedRogk,每个Chouble Graph学习,其中每个计算包括子图。 Fed FredGraph通过解决两个独特的挑战来提供强大的图形学习能力。首先,传统的GCN培训需要客户之间的数据共享,导致隐私泄漏的风险。 Fed FedGraph使用新的跨客户端卷积操作来解决此问题。第二个挑战是高GCN训练开销,由大图尺寸发生。我们提出了一种基于深度加强学习的智能图形采样算法,可以自动收敛到平衡训练速度和准确性的最佳采样策略。我们基于Pytorch实现FedFraph,并在测试平台上部署绩效评估。四个流行数据集的实验结果表明,Fed FedGraph通过使更高的准确性更快地融合来显着优于现有的工作。
translated by 谷歌翻译
由于其独特的现实世界对象及其互动,图表已广泛用于数据挖掘和机器学习。如图所说,如图所说,通常会看到它们的子图分别收集并存储在多个本地系统中。因此,考虑子图联合学习设置是自然的,其中每个本地系统保持一个可以从整个图的分布偏置的小子图。因此,子图联合的学习旨在协同培训强大且更广泛的图形挖掘模型,而无需直接共享其图形数据。在这项工作中,朝着小型但是逼真的子图联合学习设置,我们提出了两种主要技术:(1)联邦品,其基于FedAVG的基于FaItaVG列出的GraphSage模型,以在多个本地子图上集成节点特征,链接结构和任务标签; (2)FEDSAGE +,它沿edsage举办丢失的邻居生成器,以处理跨本地子图的缺失链接。具有合成子图联合学习设置的四个真实图形数据集的经验结果证明了我们所提出的技术的有效性和效率。同时,一致的理论意义是以全局图对的泛化能力。
translated by 谷歌翻译
图表卷积神经网络(GCNS)广泛用于图形分析。具体地,在医学应用中,GCNS可用于群体图中的疾病预测,其中曲线图节点代表个体,边缘代表个体相似度。然而,GCNS依赖于大量数据,这是对单一医学机构收集的具有挑战性。此外,大多数医疗机构继续面临的危急挑战是用不完全的数据信息分离地解决疾病预测。为了解决这些问题,联合学习(FL)允许隔离本地机构协作,没有数据共享的全局模型。在这项工作中,我们提出了一个框架FEDNI,通过FL释放网络染色和机构间数据。具体地,我们首先使用图形生成的对冲网络(GaN)联接捕获缺少节点和边缘预测器来完成本地网络的缺失信息。然后我们使用联合图形学习平台跨过机构训练全局GCN节点分类器。新颖的设计使我们能够通过利用联合学习和图表学习方法来构建更准确的机器学习模型。我们证明,我们的联邦模式优于本地和基线流动方法,在两个公共神经影像数据集中具有显着的边缘。
translated by 谷歌翻译
Learning on Graphs (LoG) is widely used in multi-client systems when each client has insufficient local data, and multiple clients have to share their raw data to learn a model of good quality. One scenario is to recommend items to clients with limited historical data and sharing similar preferences with other clients in a social network. On the other hand, due to the increasing demands for the protection of clients' data privacy, Federated Learning (FL) has been widely adopted: FL requires models to be trained in a multi-client system and restricts sharing of raw data among clients. The underlying potential data-sharing conflict between LoG and FL is under-explored and how to benefit from both sides is a promising problem. In this work, we first formulate the Graph Federated Learning (GFL) problem that unifies LoG and FL in multi-client systems and then propose sharing hidden representation instead of the raw data of neighbors to protect data privacy as a solution. To overcome the biased gradient problem in GFL, we provide a gradient estimation method and its convergence analysis under the non-convex objective. In experiments, we evaluate our method in classification tasks on graphs. Our experiment shows a good match between our theory and the practice.
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
受到深入学习的巨大成功通过云计算和边缘芯片的快速发展的影响,人工智能研究(AI)的研究已经转移到计算范例,即云计算和边缘计算。近年来,我们目睹了在云服务器上开发更高级的AI模型,以超越传统的深度学习模型,以造成模型创新(例如,变压器,净化家庭),训练数据爆炸和飙升的计算能力。但是,边缘计算,尤其是边缘和云协同计算,仍然在其初期阶段,因为由于资源受限的IOT场景,因此由于部署了非常有限的算法而导致其成功。在本调查中,我们对云和边缘AI进行系统审查。具体而言,我们是第一个设置云和边缘建模的协作学习机制,通过彻底的审查使能够实现这种机制的架构。我们还讨论了一些正在进行的先进EDGE AI主题的潜在和实践经验,包括预先训练模型,图形神经网络和加强学习。最后,我们讨论了这一领域的有希望的方向和挑战。
translated by 谷歌翻译
目前,联邦图神经网络(GNN)由于其在现实中的广泛应用而没有违反隐私法规而引起了很多关注。在所有隐私保护技术中,差异隐私(DP)是最有希望的,因为它的有效性和轻度计算开销。但是,基于DP的联合GNN尚未得到很好的研究,尤其是在子图级环境中,例如推荐系统的情况。最大的挑战是如何保证隐私并在联邦GNN中解决非独立和相同分布的(非IID)数据。在本文中,我们提出了基于DP的联合GNN DP-FEDREC来填补空白。利用私有集合交叉点(PSI)来扩展每个客户端的本地图,从而解决了非IID问题。最重要的是,DP不仅应用于权重,而且应用于PSI相交图的边缘,以完全保护客户的隐私。该评估表明,DP-FEDREC通过图形扩展实现了更好的性能,而DP仅引入了很少的计算开销。
translated by 谷歌翻译
图神经网络(GNN)是一类用于处理图形域信息的基于深度学习的方法。 GNN最近已成为一种广泛使用的图形分析方法,因为它们可以为复杂的图形数据学习表示形式。但是,由于隐私问题和法规限制,集中的GNN可能很难应用于数据敏感的情况。 Federated学习(FL)是一种新兴技术,为保护隐私设置而开发,当几个方需要协作培训共享的全球模型时。尽管几项研究工作已应用于培训GNN(联邦GNN),但对他们对后门攻击的稳健性没有研究。本文通过在联邦GNN中进行两种类型的后门攻击来弥合这一差距:集中式后门攻击(CBA)和分发后门攻击(DBA)。我们的实验表明,在几乎所有评估的情况下,DBA攻击成功率高于CBA。对于CBA,即使对抗方的训练集嵌入了全球触发因素,所有本地触发器的攻击成功率也类似于全球触发因素。为了进一步探索联邦GNN中两次后门攻击的属性,我们评估了不同数量的客户,触发尺寸,中毒强度和触发密度的攻击性能。此外,我们探讨了DBA和CBA对两个最先进的防御能力的鲁棒性。我们发现,两次攻击都对被调查的防御能力进行了强大的强大,因此需要考虑将联邦GNN中的后门攻击视为需要定制防御的新威胁。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译