由于其在分布式机器学习中的隐私保护,联邦学习引起了很多研究。然而,联合学习的现有工作主要侧重于卷积神经网络(CNN),其无法有效处理在许多应用中流行的图形数据。图表卷积网络(GCN)已被提出为图表学习最有前途的技术之一,但其联邦设置很少探索。在本文中,我们提出了在多个计算客户端之间的联合图学习的FedRogk,每个Chouble Graph学习,其中每个计算包括子图。 Fed FredGraph通过解决两个独特的挑战来提供强大的图形学习能力。首先,传统的GCN培训需要客户之间的数据共享,导致隐私泄漏的风险。 Fed FedGraph使用新的跨客户端卷积操作来解决此问题。第二个挑战是高GCN训练开销,由大图尺寸发生。我们提出了一种基于深度加强学习的智能图形采样算法,可以自动收敛到平衡训练速度和准确性的最佳采样策略。我们基于Pytorch实现FedFraph,并在测试平台上部署绩效评估。四个流行数据集的实验结果表明,Fed FedGraph通过使更高的准确性更快地融合来显着优于现有的工作。
translated by 谷歌翻译
With its capability to deal with graph data, which is widely found in practical applications, graph neural networks (GNNs) have attracted significant research attention in recent years. As societies become increasingly concerned with the need for data privacy protection, GNNs face the need to adapt to this new normal. Besides, as clients in Federated Learning (FL) may have relationships, more powerful tools are required to utilize such implicit information to boost performance. This has led to the rapid development of the emerging research field of federated graph neural networks (FedGNNs). This promising interdisciplinary field is highly challenging for interested researchers to grasp. The lack of an insightful survey on this topic further exacerbates the entry difficulty. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a 2-dimensional taxonomy of the FedGNNs literature: 1) the main taxonomy provides a clear perspective on the integration of GNNs and FL by analyzing how GNNs enhance FL training as well as how FL assists GNNs training, and 2) the auxiliary taxonomy provides a view on how FedGNNs deal with heterogeneity across FL clients. Through discussions of key ideas, challenges, and limitations of existing works, we envision future research directions that can help build more robust, explainable, efficient, fair, inductive, and comprehensive FedGNNs.
translated by 谷歌翻译
Graph Machine Learning最近在学术界和行业中都引起了人们的关注。大多数图形机器学习模型,例如图形神经网络(GNN),都经过大量的图形数据训练。但是,在许多实际情况下,例如医疗保健系统中的住院预测,图形数据通常存储在多个数据所有者中,并且由于隐私问题和法规限制,任何其他方都无法直接访问。联合图机器学习(FGML)是一种有前途的解决方案,可以通过以联合方式训练图机学习模型来应对这一挑战。在这项调查中,我们对FGML文献进行了全面的综述。具体而言,我们首先提供了一种新的分类法,将FGML中的现有问题分为两个设置,即,\ emph {fl带有结构化数据}和\ emph {结构化的fl}。然后,我们回顾每种环境中的主流技术,并详细介绍它们如何应对FGML下的挑战。此外,我们总结了来自不同域中FGML的现实应用程序,并介绍FGML中采用的开放图数据集和平台。最后,我们在现有研究中提出了一些局限性,并在该领域的研究方向有前途的方向。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
作为包含结构和特征信息的特殊信息载体,图被广泛用于图挖掘中,例如图形神经网络(GNNS)。但是,在某些实际情况下,图形数据分别存储在多个分布式各方中,由于利益冲突,可能不会直接共享。因此,提出了联合图神经网络来解决此类数据孤岛问题,同时保留各方(或客户)的隐私。然而,各方之间的不同图形数据分布(称为统计异质性)可能会降低诸如fedAvg之类的幼稚联合学习算法的性能。在本文中,我们提出了一个基于自我图形的联合图形学习框架Fedego,以应对上述挑战,每个客户将在此培训其本地模型,同时也为全球模型的培训做出贡献。 Fedego应用图形上的自我图形来充分利用结构信息,并利用混音来实现隐私问题。为了处理统计异质性,我们将个性化整合到学习中,并提出一种自适应混合系数策略,使客户能够实现最佳个性化。广泛的实验结果和深入分析证明了联邦的有效性。
translated by 谷歌翻译
在实际情况下,较大的全局图的子图可以分布在多个设备或机构之间,并且仅由于隐私限制而在本地访问,尽管它们之间可能存在链接。最近,拟议的子图联合学习(FL)方法涉及跨私人本地子图的那些缺失的链接,而分布式培训图形神经网络(GNN)。但是,他们忽略了子图中的不可避免的异质性,这是由包含全球图的不同部分的子图引起的。例如,一个子图可能属于较大的全局图中的一个社区之一。在这种情况下,天真的子图FL将从训练有异质图分布的本地GNN模型中崩溃不相容的知识。为了克服这样的局限性,我们引入了一个新的子图FL问题,即个性化的子图FL,该子图专注于相互关联的本地GNN模型的联合改进,而不是学习一个单一的全球GNN模型,并提出了一个新颖的框架,并提出了一个新型的框架,并提出了一个联合的个性化次级学习( Fed-pub),以解决它。个性化子图FL中的一个至关重要的挑战是服务器不知道每个客户端具有哪个子图。 Fed-pub因此使用随机图作为输入来计算它们之间的相似性,并使用它们执行对服务器端聚合的加权平均。此外,它在每个客户端学习一个个性化的稀疏掩码,以选择和更新聚合参数的子图相关子集。我们考虑了非重叠和重叠子图的六个数据集中的Fed-Pub在六个数据集上的子图FL性能,我们的基本上要优于相关的基线。
translated by 谷歌翻译
图表卷积神经网络(GCNS)广泛用于图形分析。具体地,在医学应用中,GCNS可用于群体图中的疾病预测,其中曲线图节点代表个体,边缘代表个体相似度。然而,GCNS依赖于大量数据,这是对单一医学机构收集的具有挑战性。此外,大多数医疗机构继续面临的危急挑战是用不完全的数据信息分离地解决疾病预测。为了解决这些问题,联合学习(FL)允许隔离本地机构协作,没有数据共享的全局模型。在这项工作中,我们提出了一个框架FEDNI,通过FL释放网络染色和机构间数据。具体地,我们首先使用图形生成的对冲网络(GaN)联接捕获缺少节点和边缘预测器来完成本地网络的缺失信息。然后我们使用联合图形学习平台跨过机构训练全局GCN节点分类器。新颖的设计使我们能够通过利用联合学习和图表学习方法来构建更准确的机器学习模型。我们证明,我们的联邦模式优于本地和基线流动方法,在两个公共神经影像数据集中具有显着的边缘。
translated by 谷歌翻译
联邦学习已成为不同领域培训机器学习模型的重要范式。对于诸如图形分类的图形级任务,图也可以被视为一种特殊类型的数据样本,可以收集并存储在单独的本地系统中。类似于其他域,多个本地系统,每个域每个保持一小集图,可以受益于协同训练强大的图形挖掘模型,例如流行的图形神经网络(GNN)。为了为这种努力提供更多的动机,我们分析了不同域的实际图形,以确认它们确实共享了与随机图纸相比统计上显着的某些图形属性。但是,我们还发现,即使来自同一个域或相同的数据集,也发现不同的图表是非IID,这对于图形结构和节点特征。为了处理这一点,我们提出了一种基于GNN的梯度的群集联合学习(GCFL)框架的图表集群联合学习(GCFL)框架,并且理论上可以证明这种群集可以减少本地系统所拥有的图形之间的结构和特征异质性。此外,我们观察到GNN的梯度在GCFL中强制波动,从而阻碍了高质量的聚类,并基于动态时间翘曲(GCFL +)设计了一种基于梯度序列的聚类机制。广泛的实验结果和深入分析证明了我们提出的框架的有效性。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
现在,推荐系统已经变得繁荣,旨在通过学习嵌入来预测用户对项目的潜在兴趣。图形神经网络的最新进展〜(GNNS)还提供带有强大备份的推荐系统,从用户项图中学习嵌入。但是,由于数据收集困难,仅利用用户项交互遭受冷启动问题。因此,目前的努力建议将社交信息与用户项目相互作用融合以缓解它,这是社会推荐问题。现有工作使用GNNS同时聚合两个社交链接和用户项交互。但是,它们都需要集中存储的社交链接和用户的互动,从而导致隐私问题。此外,根据严格的隐私保护,在一般数据保护规则下,将来可能不可行的数据存储可能是不可行的,敦促分散的社会建议框架。为此,我们设计了一个小说框架\ textbf {fe} delated \ textbf {so} cial推荐与\ textbf {g} raph神经网络(fesog)。首先,FeSog采用关系的关注和聚集来处理异质性。其次,Fesog Infers使用本地数据来保留个性化的用户嵌入。最后但并非最不重要的是,所提出的模型采用伪标签技术,其中包含项目采样,以保护隐私和增强培训。三个现实世界数据集的广泛实验可以证明FeSog在完成社会建议和隐私保护方面的有效性。我们是为我们所知,为社会建议提供联邦学习框架的第一项工作。
translated by 谷歌翻译
Graph mining tasks arise from many different application domains, ranging from social networks, transportation to E-commerce, etc., which have been receiving great attention from the theoretical and algorithmic design communities in recent years, and there has been some pioneering work employing the research-rich Reinforcement Learning (RL) techniques to address graph data mining tasks. However, these graph mining methods and RL models are dispersed in different research areas, which makes it hard to compare them. In this survey, we provide a comprehensive overview of RL and graph mining methods and generalize these methods to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method descriptions, open-source codes, and benchmark datasets of GRL methods. Furthermore, we propose important directions and challenges to be solved in the future. As far as we know, this is the latest work on a comprehensive survey of GRL, this work provides a global view and a learning resource for scholars. In addition, we create an online open-source for both interested scholars who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
translated by 谷歌翻译
社交机器人被称为社交网络上的自动帐户,这些帐户试图像人类一样行事。尽管图形神经网络(GNNS)已大量应用于社会机器人检测领域,但大量的领域专业知识和先验知识大量参与了最先进的方法,以设计专门的神经网络体系结构,以设计特定的神经网络体系结构。分类任务。但是,在模型设计中涉及超大的节点和网络层,通常会导致过度平滑的问题和缺乏嵌入歧视。在本文中,我们提出了罗斯加斯(Rosgas),这是一种新颖的加强和自我监督的GNN Architecture搜索框架,以适应性地指出了最合适的多跳跃社区和GNN体系结构中的层数。更具体地说,我们将社交机器人检测问题视为以用户为中心的子图嵌入和分类任务。我们利用异构信息网络来通过利用帐户元数据,关系,行为特征和内容功能来展示用户连接。 Rosgas使用多代理的深钢筋学习(RL)机制来导航最佳邻域和网络层的搜索,以分别学习每个目标用户的子图嵌入。开发了一种用于加速RL训练过程的最接近的邻居机制,Rosgas可以借助自我监督的学习来学习更多的判别子图。 5个Twitter数据集的实验表明,Rosgas在准确性,训练效率和稳定性方面优于最先进的方法,并且在处理看不见的样本时具有更好的概括。
translated by 谷歌翻译
Federated learning has recently been applied to recommendation systems to protect user privacy. In federated learning settings, recommendation systems can train recommendation models only collecting the intermediate parameters instead of the real user data, which greatly enhances the user privacy. Beside, federated recommendation systems enable to collaborate with other data platforms to improve recommended model performance while meeting the regulation and privacy constraints. However, federated recommendation systems faces many new challenges such as privacy, security, heterogeneity and communication costs. While significant research has been conducted in these areas, gaps in the surveying literature still exist. In this survey, we-(1) summarize some common privacy mechanisms used in federated recommendation systems and discuss the advantages and limitations of each mechanism; (2) review some robust aggregation strategies and several novel attacks against security; (3) summarize some approaches to address heterogeneity and communication costs problems; (4)introduce some open source platforms that can be used to build federated recommendation systems; (5) present some prospective research directions in the future. This survey can guide researchers and practitioners understand the research progress in these areas.
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
联合学习(FL)以来已提议已应用于许多领域,例如信用评估,医疗等。由于网络或计算资源的差异,客户端可能不会同时更新其渐变可能需要花费等待或闲置的时间。这就是为什么需要异步联合学习(AFL)方法。AFL中的主要瓶颈是沟通。如何在模型性能和通信成本之间找到平衡是AFL的挑战。本文提出了一种新的AFL框架VAFL。我们通过足够的实验验证了算法的性能。实验表明,VAFL可以通过48.23 \%的平均通信压缩速率降低约51.02 \%的通信时间,并允许模型更快地收敛。代码可用于\ url {https://github.com/robai-lab/vafl}
translated by 谷歌翻译