Realizing human-like perception is a challenge in open driving scenarios due to corner cases and visual occlusions. To gather knowledge of rare and occluded instances, federated learning assisted connected autonomous vehicle (FLCAV) has been proposed, which leverages vehicular networks to establish federated deep neural networks (DNNs) from distributed data captured by vehicles and road sensors. Without the need of data aggregation, FLCAV preserves privacy while reducing communication costs compared with conventional centralized learning. However, it is challenging to determine the network resources and road sensor placements for multi-stage training with multi-modal datasets in multi-variant scenarios. This article presents networking and training frameworks for FLCAV perception. Multi-layer graph resource allocation and vehicle-road contrastive sensor placement are proposed to address the network management and sensor deployment problems, respectively. We also develop CarlaFLCAV, a software platform that implements the above system and methods. Experimental results confirm the superiority of the proposed techniques compared with various benchmarks.
translated by 谷歌翻译
Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex urban environments. The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, shake in the wind, while the traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the challenges are also explored while prioritizing practical deployment.
translated by 谷歌翻译
感知环境是实现合作驾驶自动化(CDA)的最基本关键之一,该关键被认为是解决当代运输系统的安全性,流动性和可持续性问题的革命性解决方案。尽管目前在计算机视觉的物体感知领域正在发生前所未有的进化,但由于不可避免的物理遮挡和单辆车的接受程度有限,最先进的感知方法仍在与复杂的现实世界流量环境中挣扎系统。基于多个空间分离的感知节点,合作感知(CP)诞生是为了解锁驱动自动化的感知瓶颈。在本文中,我们全面审查和分析了CP的研究进度,据我们所知,这是第一次提出统一的CP框架。审查了基于不同类型的传感器的CP系统的体系结构和分类学,以显示对CP系统的工作流程和不同结构的高级描述。对节点结构,传感器模式和融合方案进行了审查和分析,并使用全面的文献进行了详细的解释。提出了分层CP框架,然后对现有数据集和模拟器进行审查,以勾勒出CP的整体景观。讨论重点介绍了当前的机会,开放挑战和预期的未来趋势。
translated by 谷歌翻译
已开发了网络车辆中动态地图融合的技术,以扩大感应范围并提高单个车辆的感应精度。本文提出了一个基于联合学习(FL)的动态地图融合框架,以达到高地图质量,尽管视野中的对象数量未知(FOV),各种感应和模型不确定性以及缺少用于在线学习的数据标签。这项工作的新颖性是三重的:(1)开发一个三阶段的融合方案,以有效地预测对象的数量并将多个局部地图融合到富达得分; (2)开发一种通过汇总模型参数分布的FL算法,该算法通过微型模型(即表示特征提取的表示网络)进行了; (3)开发一种知识蒸馏方法,以在数据标签不可用时生成FL培训标签。所提出的框架是在汽车学习(CARLA)模拟平台中实施的。提供了广泛的实验结果,以验证开发的MAP融合和FL方案的出色性能和鲁棒性。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
具有自动化和连通性的赋予,连接和自动化的车辆旨在成为合作驾驶自动化的革命性推动者。然而,骑士需要对周围环境的高保真感知信息,但从各种车载传感器以及车辆到所有的通信(v2x)通信中都可以昂贵。因此,通过具有成本效益的平台基于高保真传感器的真实感知信息对于启用与CDA相关的研究(例如合作决策或控制)至关重要。大多数针对CAVS的最先进的交通模拟研究都通过直接呼吁对象的内在属性来依赖情况 - 意识信息,这阻碍了CDA算法评估的可靠性和保真度。在这项研究中,\ textit {网络移动镜(CMM)}共模拟平台设计用于通过提供真实感知信息来启用CDA。 \ textit {cmm}共模拟平台可以通过高保真传感器感知系统和具有实时重建系统的网络世界模仿现实世界。具体而言,现实世界的模拟器主要负责模拟交通环境,传感器以及真实的感知过程。 Mirror-World Simulator负责重建对象,并将其信息作为模拟器的内在属性,以支持CD​​A算法的开发和评估。为了说明拟议的共模拟平台的功能,将基于路边的激光雷达的车辆感知系统原型作为研究案例。特定的流量环境和CDA任务是为实验设计的,其结果得到了证明和分析以显示平台的性能。
translated by 谷歌翻译
自主车辆的环境感知受其物理传感器范围和算法性能的限制,以及通过降低其对正在进行的交通状况的理解的闭塞。这不仅构成了对安全和限制驾驶速度的重大威胁,而且它也可能导致不方便的动作。智能基础设施系统可以帮助缓解这些问题。智能基础设施系统可以通过在当前交通情况的数字模型的形式提供关于其周围环境的额外详细信息,填补了车辆的感知中的差距并扩展了其视野。数字双胞胎。然而,这种系统的详细描述和工作原型表明其可行性稀缺。在本文中,我们提出了一种硬件和软件架构,可实现这样一个可靠的智能基础架构系统。我们在现实世界中实施了该系统,并展示了它能够创建一个准确的延伸高速公路延伸的数字双胞胎,从而提高了自主车辆超越其车载传感器的极限的感知。此外,我们通过使用空中图像和地球观测方法来评估数字双胞胎的准确性和可靠性,用于产生地面真理数据。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
边缘联合学习(FL)是一种新兴范式,它基于无线通信从分布式数据集中列出全局参数模型。本文提出了一个单位模量的空中计算(UMAircomp)框架,以便于高效的边缘联合学习,它同时通过模拟波束形成更新本地模型参数并更新全局模型参数。所提出的框架避免了复杂的基带信号处理,导致通信延迟和实现成本低。推导Umaircomp FL系统的培训损失界限,并提出了两个低复杂性大规模优化算法,称为惩罚交替最小化(PAM)和加速梯度投影(AGP),以最小化非凸起的非运动损耗绑定。仿真结果表明,与PAM算法的提议Umaircomp框架达到了模型参数估计,训练丢失和测试错误的较小均方误差。此外,具有AGP算法的提议Umaircomp框架实现了令人满意的性能,而与现有优化算法相比,通过幅度的序列降低了计算复杂性。最后,我们展示了Umaircomp在车辆到一般的自主驾驶仿真平台中的实现。发现自主驾驶任务对模型参数误差比其他任务更敏感,因为自主驱动的神经网络包含稀疏模型参数。
translated by 谷歌翻译
机器学习(ML)最近在车辆网络中采用了用于自动驾驶,道路安全预测和车辆对象检测等应用,这是由于其无模型的特性,从而允许自适应快速响应。但是,这些ML应用程序中的大多数采用集中学习(CL),这为参数服务器和车辆边缘设备之间的数据传输带来了重要的开销。联合学习(FL)框架最近被引入为有效的工具,目的是通过传输模型更新而不是整个数据集来减少传输开销,同时通过传输来实现隐私。在本文中,我们调查了FL在车辆网络应用中的用法来开发智能运输系统。我们提供了有关FL对基于ML的车辆应用的可行性的全面分析,并通过利用基于图像的数据集作为案例研究来研究对象检测。然后,我们从学习的角度(即数据标签和模型培训)以及从通信的角度(即数据速率,可靠性,传输开销,隐私和资源管理)确定了主要挑战。最后,我们重点介绍了车辆网络中FL的未来研究指示。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
用于流量操作和控制的现有数据收集方法通常依赖于基于基础架构的环路探测器或探测器车辆轨迹。连接和自动化的车辆(CAVS)不仅可以报告有关自己的数据,而且可以提供所有检测到的周围车辆的状态。从多个CAVS以及基础设施传感器(例如Lidar)的感知数据集成,即使在非常低的渗透率下也可以提供更丰富的信息。本文旨在开发合作数据收集系统,该系统集成了来自基础架构和CAVS的LiDar Point Cloud数据,以为各种运输应用创建合作感知环境。最新的3D检测模型用于在合并点云中检测车辆。我们在与Carla和Sumo的共模拟平台中测试了具有最大压力自适应信号控制模型的提出的合作感知环境。结果表明,CAV和基础设施传感器的渗透率非常低,足以实现可比性的性能,而连接车辆(CV)的渗透率为30%或更高。我们还显示了不同CAV渗透率下的等效CV渗透率(E-CVPR),以证明合作感知环境的数据收集效率。
translated by 谷歌翻译
在未来几十年中,自动驾驶将普遍存在。闲置在交叉点上提高自动驾驶的安全性,并通过改善交叉点的交通吞吐量来提高效率。在闲置时,路边基础设施通过卸载从车辆到路边基础设施的知觉和计划,在交叉路口远程驾驶自动驾驶汽车。为了实现这一目标,iDriving必须能够以全帧速率以较少100毫秒的尾声处理大量的传感器数据,而无需牺牲准确性。我们描述了算法和优化,使其能够使用准确且轻巧的感知组件实现此目标,该组件是从重叠传感器中得出的复合视图的原因,以及一个共同计划多个车辆的轨迹的计划者。在我们的评估中,闲置始终确保车辆的安全通过,而自动驾驶只能有27%的时间。与其他方法相比,闲置的等待时间还要低5倍,因为它可以实现无流量的交叉点。
translated by 谷歌翻译
两栖地面汽车将飞行和驾驶模式融合在一起,以实现更灵活的空中行动能力,并且最近受到了越来越多的关注。通过分析现有的两栖车辆,我们强调了在复杂的三维城市运输系统中有效使用两栖车辆的自动驾驶功能。我们审查并总结了现有两栖车辆设计中智能飞行驾驶的关键促成技术,确定主要的技术障碍,并提出潜在的解决方案,以实现未来的研究和创新。本文旨在作为研究和开发智能两栖车辆的指南,以实现未来的城市运输。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译