因果发现旨在从观察数据中学习因果图。迄今为止,大多数因果发现方法需要将数据存储在中央服务器中。但是,数据所有者逐渐拒绝分享他们的个性化数据以避免隐私泄漏,使这项任务通过切断第一步来更加麻烦。出现拼图:$ \ texit {如何从分散数据的原因关系推断出来自分散数据的因果关系?} $本文,具有数据的添加性噪声模型假设,我们参加了开发基于渐变的学习框架命名为DAG共享的渐变学习框架联邦因果发现(DS-FCD),可以在不直接触摸本地数据的情况下学习因果图,并自然地处理数据异质性。 DS-FCD受益于每个本地模型的两级结构。第一级别学习因果图并与服务器通信以获取来自其他客户端的模型信息,而第二级别近似于因果机制,并且从其自身的数据逐步更新以适应数据异质性。此外,DS-FCD通过利用平等的非循环性约束,将整体学习任务制定为连续优化问题,这可以通过梯度下降方法自然地解决。对合成和现实世界数据集的广泛实验验证了所提出的方法的功效。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
本文研究了从观察数据学习因果关系的问题。我们用二进制图邻接矩阵参数化的形式重整结构方程模型(SEM),并显示,如果原始SEM是可识别的,则可以识别二进制邻接矩阵到真实因果图的超图在温和的条件下。然后,我们利用所述重新设计的SEM来开发一种因果结构学习方法,可以通过利用对非循环性和Gumbel-Softmax方法的平滑表征来实现基于梯度的优化来有效地接受训练,以近似于二进制邻接矩阵。发现获得的条目通常在零或一个附近,并且可以容易地阈值以识别边缘。我们对合成和实时数据集进行实验,以验证所提出的方法的有效性,并表明它容易包括不同的平滑模型功能,并在考虑大多数数据集中实现了大大提高的性能。
translated by 谷歌翻译
从观察数据中学习因果结构是机器学习的基本挑战。但是,大多数常用的可区分因果发现方法是不可识别的,这将此问题变成了容易发生数据偏差的连续优化任务。在许多现实生活中,数据是从不同环境中收集的,在不同的环境中,功能关系在整个环境中保持一致,而添加噪声的分布可能会有所不同。本文提出了可区分的因果发现(DICD),利用基于可区分框架的多环境信息,以避免学习虚假边缘和错误的因果方向。具体而言,DICD旨在在消除环境依赖性相关性的同时发现环境不变的因果关系。我们进一步制定了强制执行目标结构方程模型的约束,以在整个环境中保持最佳状态。在温和条件下提供了足够的环境,提供了针对拟议DICD的可识别性的理论保证。关于合成和现实世界数据集的广泛实验验证了DICD优于最先进的因果发现方法,而SHD中最高36%。我们的代码将是开源的。
translated by 谷歌翻译
在非参数环境中,因果结构通常仅在马尔可夫等效性上可识别,并且出于因果推断的目的,学习马尔可夫等效类(MEC)的图形表示很有用。在本文中,我们重新审视了贪婪的等效搜索(GES)算法,该算法被广泛引用为一种基于分数的算法,用于学习基本因果结构的MEC。我们观察到,为了使GES算法在非参数设置中保持一致,不必设计评估图的评分度量。取而代之的是,足以插入有条件依赖度量的一致估计器来指导搜索。因此,我们提出了GES算法的重塑,该算法比基于标准分数的版本更灵活,并且很容易将自己带到非参数设置,并具有条件依赖性的一般度量。此外,我们提出了一种神经条件依赖性(NCD)度量,该措施利用深神经网络的表达能力以非参数方式表征条件独立性。我们根据标准假设建立了重新构架GES算法的最佳性,并使用我们的NCD估计器来决定条件独立性的一致性。这些结果共同证明了拟议的方法。实验结果证明了我们方法在因果发现中的有效性,以及使用我们的NCD度量而不是基于内核的措施的优势。
translated by 谷歌翻译
学习由有针对性的无环图(DAG)代表的基本休闲结构,这些事件来自完全观察到的事件是因果推理的关键部分,但由于组合和较大的搜索空间,这是一项挑战。最近的一系列发展通过利用代数平等表征,将该组合问题重新生要重现为一个连续的优化问题。但是,这些方法在优化之后遭受了固定阈值的措施,这不是一种灵活而系统的方法,可以排除诱导周期的边缘或错误的发现边缘,其边缘具有由数值精度引起的较小值。在本文中,我们开发了一种数据驱动的DAG结构学习方法,而没有预定义阈值,称为自适应宣传[30],该方法通过在正则化项中对每个参数应用自适应惩罚水平来实现。我们表明,在某些特定条件下,自适应宣传符合Oracle属性。此外,模拟实验结果验证了我们方法的有效性,而没有设置边缘重量的任何间隙。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
Causal discovery, the inference of causal relations from data, is a core task of fundamental importance in all scientific domains, and several new machine learning methods for addressing the causal discovery problem have been proposed recently. However, existing machine learning methods for causal discovery typically require that the data used for inference is pooled and available in a centralized location. In many domains of high practical importance, such as in healthcare, data is only available at local data-generating entities (e.g. hospitals in the healthcare context), and cannot be shared across entities due to, among others, privacy and regulatory reasons. In this work, we address the problem of inferring causal structure - in the form of a directed acyclic graph (DAG) - from a distributed data set that contains both observational and interventional data in a privacy-preserving manner by exchanging updates instead of samples. To this end, we introduce a new federated framework, FED-CD, that enables the discovery of global causal structures both when the set of intervened covariates is the same across decentralized entities, and when the set of intervened covariates are potentially disjoint. We perform a comprehensive experimental evaluation on synthetic data that demonstrates that FED-CD enables effective aggregation of decentralized data for causal discovery without direct sample sharing, even when the contributing distributed data sets cover disjoint sets of interventions. Effective methods for causal discovery in distributed data sets could significantly advance scientific discovery and knowledge sharing in important settings, for instance, healthcare, in which sharing of data across local sites is difficult or prohibited.
translated by 谷歌翻译
模拟DAG模型可能表现出属性,也许无意中,使其结构识别和意外地影响结构学习算法。在这里,我们表明边缘方差往往沿着仿制性添加添加剂噪声模型的因果顺序增加。我们将Varsortable介绍为衡量衡量边际差异和因果顺序的秩序之间的协议。对于通常采样的图形和模型参数,我们表明,一些连续结构学习算法的显着性能可以通过高的Varsortable解释,并通过简单的基线方法匹配。然而,这种性能可能不会转移到真实世界的数据,其中VARS使性可能是中等或取决于测量尺度的选择。在标准化数据上,相同的算法无法识别地面真理DAG或其Markov等价类。虽然标准化在边缘方差中删除了模式,但我们表明,数据产生过程,其产生高VILS使性也留下了即使在标准化之后也可以利用不同的协方差模式。我们的调查结果挑战了独立绘制参数的通用基准的重要性。代码可在https://github.com/scriddie/varsortable获得。
translated by 谷歌翻译
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
translated by 谷歌翻译
Learning on Graphs (LoG) is widely used in multi-client systems when each client has insufficient local data, and multiple clients have to share their raw data to learn a model of good quality. One scenario is to recommend items to clients with limited historical data and sharing similar preferences with other clients in a social network. On the other hand, due to the increasing demands for the protection of clients' data privacy, Federated Learning (FL) has been widely adopted: FL requires models to be trained in a multi-client system and restricts sharing of raw data among clients. The underlying potential data-sharing conflict between LoG and FL is under-explored and how to benefit from both sides is a promising problem. In this work, we first formulate the Graph Federated Learning (GFL) problem that unifies LoG and FL in multi-client systems and then propose sharing hidden representation instead of the raw data of neighbors to protect data privacy as a solution. To overcome the biased gradient problem in GFL, we provide a gradient estimation method and its convergence analysis under the non-convex objective. In experiments, we evaluate our method in classification tasks on graphs. Our experiment shows a good match between our theory and the practice.
translated by 谷歌翻译
从观察数据中恢复基本的定向无环形结构(DAG),由于DAG受限的优化问题的组合性质,因此极具挑战性。最近,通过将DAG约束将DAG的限制定义为平滑的平等性,通常基于邻接矩阵上的多项式,将DAG学习作为连续优化问题。现有方法将非常小的系数放在高阶多项式术语上以进行稳定,因为它们认为由于数字爆炸而导致高阶项上的大系数有害。相反,我们发现,高阶术语上的大系数对DAG学习有益,当邻接矩阵的光谱辐射小时,高阶术语的较大系数可以比小尺寸近似于小的限制。同行。基于此,我们提出了一种具有有效截短的矩阵功率迭代的新型DAG学习方法,以近似于基于几何序列的DAG约束。从经验上讲,我们的DAG学习方法在各种环境中的表现优于先前的最新方法,在结构锤距离上通常以3倍或以上的倍数。
translated by 谷歌翻译
在许多科学领域,观察数据中的因果发现是一项重要但具有挑战性的任务。最近,一种称为宣传的非组合定向无环约束的方法将因果结构学习问题作为使用最小二乘损失的连续优化问题。尽管在标准高斯噪声假设下,最小二乘损耗函数是合理的,但如果假设不存在,则受到限制。在这项工作中,我们从理论上表明,违反高斯噪声假设将阻碍因果方向的识别,从而使因果强度以及线性案例中的噪声和噪声方差完全确定。在非线性情况下的噪音。因此,我们提出了一个更一般的基于熵的损失,理论上与任何噪声分布下的可能性得分一致。我们对合成数据和现实世界数据进行了广泛的经验评估,以验证所提出的方法的有效性,并表明我们的方法在结构锤距离,错误发现率和真实的正速率矩阵方面达到了最佳状态。
translated by 谷歌翻译
联邦学习已成为不同领域培训机器学习模型的重要范式。对于诸如图形分类的图形级任务,图也可以被视为一种特殊类型的数据样本,可以收集并存储在单独的本地系统中。类似于其他域,多个本地系统,每个域每个保持一小集图,可以受益于协同训练强大的图形挖掘模型,例如流行的图形神经网络(GNN)。为了为这种努力提供更多的动机,我们分析了不同域的实际图形,以确认它们确实共享了与随机图纸相比统计上显着的某些图形属性。但是,我们还发现,即使来自同一个域或相同的数据集,也发现不同的图表是非IID,这对于图形结构和节点特征。为了处理这一点,我们提出了一种基于GNN的梯度的群集联合学习(GCFL)框架的图表集群联合学习(GCFL)框架,并且理论上可以证明这种群集可以减少本地系统所拥有的图形之间的结构和特征异质性。此外,我们观察到GNN的梯度在GCFL中强制波动,从而阻碍了高质量的聚类,并基于动态时间翘曲(GCFL +)设计了一种基于梯度序列的聚类机制。广泛的实验结果和深入分析证明了我们提出的框架的有效性。
translated by 谷歌翻译
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译
作为包含结构和特征信息的特殊信息载体,图被广泛用于图挖掘中,例如图形神经网络(GNNS)。但是,在某些实际情况下,图形数据分别存储在多个分布式各方中,由于利益冲突,可能不会直接共享。因此,提出了联合图神经网络来解决此类数据孤岛问题,同时保留各方(或客户)的隐私。然而,各方之间的不同图形数据分布(称为统计异质性)可能会降低诸如fedAvg之类的幼稚联合学习算法的性能。在本文中,我们提出了一个基于自我图形的联合图形学习框架Fedego,以应对上述挑战,每个客户将在此培训其本地模型,同时也为全球模型的培训做出贡献。 Fedego应用图形上的自我图形来充分利用结构信息,并利用混音来实现隐私问题。为了处理统计异质性,我们将个性化整合到学习中,并提出一种自适应混合系数策略,使客户能够实现最佳个性化。广泛的实验结果和深入分析证明了联邦的有效性。
translated by 谷歌翻译
Causal structure learning from observational data remains a non-trivial task due to various factors such as finite sampling, unobserved confounding factors, and measurement errors. Constraint-based and score-based methods tend to suffer from high computational complexity due to the combinatorial nature of estimating the directed acyclic graph (DAG). Motivated by the `Cause-Effect Pair' NIPS 2013 Workshop on Causality Challenge, in this paper, we take a different approach and generate a probability distribution over all possible graphs informed by the cause-effect pair features proposed in response to the workshop challenge. The goal of the paper is to propose new methods based on this probabilistic information and compare their performance with traditional and state-of-the-art approaches. Our experiments, on both synthetic and real datasets, show that our proposed methods not only have statistically similar or better performances than some traditional approaches but also are computationally faster.
translated by 谷歌翻译
贝叶斯结构学习允许从数据推断贝叶斯网络结构,同时推理认识性不确定性 - 朝着实现现实世界系统的主动因果发现和设计干预的关键因素。在这项工作中,我们为贝叶斯结构学习(DIBS)提出了一般,完全可微分的框架,其在潜在概率图表表示的连续空间中运行。与现有的工作相反,DIBS对局部条件分布的形式不可知,并且允许图形结构和条件分布参数的关节后部推理。这使得我们的配方直接适用于复杂贝叶斯网络模型的后部推理,例如,具有由神经网络编码的非线性依赖性。使用DIBS,我们设计了一种高效,通用的变分推理方法,用于近似结构模型的分布。在模拟和现实世界数据的评估中,我们的方法显着优于关节后部推理的相关方法。
translated by 谷歌翻译