从观察数据中学习因果结构是机器学习的基本挑战。但是,大多数常用的可区分因果发现方法是不可识别的,这将此问题变成了容易发生数据偏差的连续优化任务。在许多现实生活中,数据是从不同环境中收集的,在不同的环境中,功能关系在整个环境中保持一致,而添加噪声的分布可能会有所不同。本文提出了可区分的因果发现(DICD),利用基于可区分框架的多环境信息,以避免学习虚假边缘和错误的因果方向。具体而言,DICD旨在在消除环境依赖性相关性的同时发现环境不变的因果关系。我们进一步制定了强制执行目标结构方程模型的约束,以在整个环境中保持最佳状态。在温和条件下提供了足够的环境,提供了针对拟议DICD的可识别性的理论保证。关于合成和现实世界数据集的广泛实验验证了DICD优于最先进的因果发现方法,而SHD中最高36%。我们的代码将是开源的。
translated by 谷歌翻译
本文研究了从观察数据学习因果关系的问题。我们用二进制图邻接矩阵参数化的形式重整结构方程模型(SEM),并显示,如果原始SEM是可识别的,则可以识别二进制邻接矩阵到真实因果图的超图在温和的条件下。然后,我们利用所述重新设计的SEM来开发一种因果结构学习方法,可以通过利用对非循环性和Gumbel-Softmax方法的平滑表征来实现基于梯度的优化来有效地接受训练,以近似于二进制邻接矩阵。发现获得的条目通常在零或一个附近,并且可以容易地阈值以识别边缘。我们对合成和实时数据集进行实验,以验证所提出的方法的有效性,并表明它容易包括不同的平滑模型功能,并在考虑大多数数据集中实现了大大提高的性能。
translated by 谷歌翻译
因果发现旨在从观察数据中学习因果图。迄今为止,大多数因果发现方法需要将数据存储在中央服务器中。但是,数据所有者逐渐拒绝分享他们的个性化数据以避免隐私泄漏,使这项任务通过切断第一步来更加麻烦。出现拼图:$ \ texit {如何从分散数据的原因关系推断出来自分散数据的因果关系?} $本文,具有数据的添加性噪声模型假设,我们参加了开发基于渐变的学习框架命名为DAG共享的渐变学习框架联邦因果发现(DS-FCD),可以在不直接触摸本地数据的情况下学习因果图,并自然地处理数据异质性。 DS-FCD受益于每个本地模型的两级结构。第一级别学习因果图并与服务器通信以获取来自其他客户端的模型信息,而第二级别近似于因果机制,并且从其自身的数据逐步更新以适应数据异质性。此外,DS-FCD通过利用平等的非循环性约束,将整体学习任务制定为连续优化问题,这可以通过梯度下降方法自然地解决。对合成和现实世界数据集的广泛实验验证了所提出的方法的功效。
translated by 谷歌翻译
在许多科学领域,观察数据中的因果发现是一项重要但具有挑战性的任务。最近,一种称为宣传的非组合定向无环约束的方法将因果结构学习问题作为使用最小二乘损失的连续优化问题。尽管在标准高斯噪声假设下,最小二乘损耗函数是合理的,但如果假设不存在,则受到限制。在这项工作中,我们从理论上表明,违反高斯噪声假设将阻碍因果方向的识别,从而使因果强度以及线性案例中的噪声和噪声方差完全确定。在非线性情况下的噪音。因此,我们提出了一个更一般的基于熵的损失,理论上与任何噪声分布下的可能性得分一致。我们对合成数据和现实世界数据进行了广泛的经验评估,以验证所提出的方法的有效性,并表明我们的方法在结构锤距离,错误发现率和真实的正速率矩阵方面达到了最佳状态。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
学习数据背后的因果结构对于改善概括和获得高质量的解释是无价的。我们提出了一个新颖的框架,不变结构学习(ISL),旨在通过利用概括作为指示来改善因果结构发现。 ISL将数据分配到不同的环境中,并通过施加一致性约束来学习一个在不同环境中不变的结构。然后,聚集机制基于图形结构选择最佳分类器,该图形结构与从单个环境中学到的结构相比,更准确地反映了数据中的因果机制。此外,我们将ISL扩展到一个自制的学习环境,在该设置中,准确的因果结构发现不依赖任何标签。这种自我监督的ISL通过迭代设置不同的节点作为目标来利用不变的因果关系。在合成和现实世界数据集上,我们证明了ISL准确地发现因果结构,优于替代方法,并且对具有显着分布变化的数据集产生了卓越的概括。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
模拟DAG模型可能表现出属性,也许无意中,使其结构识别和意外地影响结构学习算法。在这里,我们表明边缘方差往往沿着仿制性添加添加剂噪声模型的因果顺序增加。我们将Varsortable介绍为衡量衡量边际差异和因果顺序的秩序之间的协议。对于通常采样的图形和模型参数,我们表明,一些连续结构学习算法的显着性能可以通过高的Varsortable解释,并通过简单的基线方法匹配。然而,这种性能可能不会转移到真实世界的数据,其中VARS使性可能是中等或取决于测量尺度的选择。在标准化数据上,相同的算法无法识别地面真理DAG或其Markov等价类。虽然标准化在边缘方差中删除了模式,但我们表明,数据产生过程,其产生高VILS使性也留下了即使在标准化之后也可以利用不同的协方差模式。我们的调查结果挑战了独立绘制参数的通用基准的重要性。代码可在https://github.com/scriddie/varsortable获得。
translated by 谷歌翻译
学习由有针对性的无环图(DAG)代表的基本休闲结构,这些事件来自完全观察到的事件是因果推理的关键部分,但由于组合和较大的搜索空间,这是一项挑战。最近的一系列发展通过利用代数平等表征,将该组合问题重新生要重现为一个连续的优化问题。但是,这些方法在优化之后遭受了固定阈值的措施,这不是一种灵活而系统的方法,可以排除诱导周期的边缘或错误的发现边缘,其边缘具有由数值精度引起的较小值。在本文中,我们开发了一种数据驱动的DAG结构学习方法,而没有预定义阈值,称为自适应宣传[30],该方法通过在正则化项中对每个参数应用自适应惩罚水平来实现。我们表明,在某些特定条件下,自适应宣传符合Oracle属性。此外,模拟实验结果验证了我们方法的有效性,而没有设置边缘重量的任何间隙。
translated by 谷歌翻译
在非参数环境中,因果结构通常仅在马尔可夫等效性上可识别,并且出于因果推断的目的,学习马尔可夫等效类(MEC)的图形表示很有用。在本文中,我们重新审视了贪婪的等效搜索(GES)算法,该算法被广泛引用为一种基于分数的算法,用于学习基本因果结构的MEC。我们观察到,为了使GES算法在非参数设置中保持一致,不必设计评估图的评分度量。取而代之的是,足以插入有条件依赖度量的一致估计器来指导搜索。因此,我们提出了GES算法的重塑,该算法比基于标准分数的版本更灵活,并且很容易将自己带到非参数设置,并具有条件依赖性的一般度量。此外,我们提出了一种神经条件依赖性(NCD)度量,该措施利用深神经网络的表达能力以非参数方式表征条件独立性。我们根据标准假设建立了重新构架GES算法的最佳性,并使用我们的NCD估计器来决定条件独立性的一致性。这些结果共同证明了拟议的方法。实验结果证明了我们方法在因果发现中的有效性,以及使用我们的NCD度量而不是基于内核的措施的优势。
translated by 谷歌翻译
Linear structural causal models (SCMs)-- in which each observed variable is generated by a subset of the other observed variables as well as a subset of the exogenous sources-- are pervasive in causal inference and casual discovery. However, for the task of causal discovery, existing work almost exclusively focus on the submodel where each observed variable is associated with a distinct source with non-zero variance. This results in the restriction that no observed variable can deterministically depend on other observed variables or latent confounders. In this paper, we extend the results on structure learning by focusing on a subclass of linear SCMs which do not have this property, i.e., models in which observed variables can be causally affected by any subset of the sources, and are allowed to be a deterministic function of other observed variables or latent confounders. This allows for a more realistic modeling of influence or information propagation in systems. We focus on the task of causal discovery form observational data generated from a member of this subclass. We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure. To the best of our knowledge, this is the first work that gives identifiability results for causal discovery under both latent confounding and deterministic relationships. Further, we propose an algorithm for recovering the underlying causal structure when the aforementioned conditions are satisfied. We validate our theoretical results both on synthetic and real datasets.
translated by 谷歌翻译
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集,并进行了数千种干预措施,然后进行了数千个变量的丰富分析,从而增加了机会和迫切需要大量因果图模型。在这里,我们介绍了因子定向无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间小得多,因此在很难评估基础骨架的高维度中更统计学上的稳定性。我们提出了因子图(DCD-FG)的可区分因果发现,这是对高维介入数据的F-DAG约束因果发现的可扩展实现。 DCD-FG使用高斯非线性低级结构方程模型,并且在模拟中的最新方法以及最新的大型单细胞RNA测序数据集中,与最新方法相比显示出显着改善遗传干预措施。
translated by 谷歌翻译
因果表示学习是识别基本因果变量及其从高维观察(例如图像)中的关系的任务。最近的工作表明,可以从观测的时间序列中重建因果变量,假设它们之间没有瞬时因果关系。但是,在实际应用中,我们的测量或帧速率可能比许多因果效应要慢。这有效地产生了“瞬时”效果,并使以前的可识别性结果无效。为了解决这个问题,我们提出了ICITRI,这是一种因果表示学习方法,当具有已知干预目标的完美干预措施时,可以在时间序列中处理瞬时效应。 Icitris从时间观察中识别因果因素,同时使用可区分的因果发现方法来学习其因果图。在三个视频数据集的实验中,Icitris准确地识别了因果因素及其因果图。
translated by 谷歌翻译
作为在人类智能中获得可推广的解决方案的关键组成部分,推理为加强学习(RL)代理人对各种目标的概括提供了巨大的潜力,这是通过汇总部分到全部的论点并发现因果关系的。但是,如何发现和代表因果关系仍然是阻碍因果RL发展的巨大差距。在本文中,我们使用因果图(CG)增强目标条件的RL(GCRL),该结构是基于对象和事件之间的关系建立的。我们在小新生中将GCRL问题提出为变异的可能性最大化,将CG作为潜在变量。为了优化派生目标,我们提出了一个具有理论性能的框架,可以保证在两个步骤之间交替:使用介入数据来估计CG的后验;使用CG学习可推广的模型和可解释的政策。由于缺乏在推理下验证概括能力的公共基准测试,我们设计了九个任务,然后从经验上显示了对这些任务上五个基准的拟议方法的有效性。进一步的理论分析表明,我们的绩效提高归因于因果发现,过渡建模和政策培训的良性周期,这与广泛消融研究中的实验证据相吻合。
translated by 谷歌翻译
我们对无监督的结构学习感兴趣,特别关注有向的无环图形(DAG)模型。推断这些结构所需的计算通常在变量量中是超指定性的,因为推理需要扫描组合较大的潜在结构空间。也就是说,直到最近允许使用可区分的度量标准搜索此空间,大幅度缩短了搜索时间。尽管该技术(名为Notears)被广泛认为是在DAG-DISCOVERY中的开创性工作,但它承认了一个重要的属性,有利于可怜性:可运输性。在我们的论文中,我们介绍了D型结构,该结构通过新颖的结构和损失功能在发现的结构中恢复可运输性,同时保持完全可区分。由于D型结构仍然可区分,因此可以像以前使用Notears一样轻松地采用我们的方法。在我们的实验中,我们根据边缘准确性和结构锤距离验证了D结构。
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
translated by 谷歌翻译
We consider the problem of recovering the causal structure underlying observations from different experimental conditions when the targets of the interventions in each experiment are unknown. We assume a linear structural causal model with additive Gaussian noise and consider interventions that perturb their targets while maintaining the causal relationships in the system. Different models may entail the same distributions, offering competing causal explanations for the given observations. We fully characterize this equivalence class and offer identifiability results, which we use to derive a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets. In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice. We leverage this procedure and evaluate the performance of GnIES on synthetic, real, and semi-synthetic data sets. Despite the strong Gaussian distributional assumption, GnIES is robust to an array of model violations and competitive in recovering the causal structure in small- to large-sample settings. We provide, in the Python packages "gnies" and "sempler", implementations of GnIES and our semi-synthetic data generation procedure.
translated by 谷歌翻译
域的概括(DG)通过利用来自多个相关分布或域的标记培训数据在看不见的测试分布上表现良好的预测因子。为了实现这一目标,标准公式优化了所有可能域的最差性能。但是,由于最糟糕的转变在实践中的转变极不可能,这通常会导致过度保守的解决方案。实际上,最近的一项研究发现,没有DG算法在平均性能方面优于经验风险最小化。在这项工作中,我们认为DG既不是最坏的问题,也不是一个普通的问题,而是概率问题。为此,我们为DG提出了一个概率框架,我们称之为可能的域概括,其中我们的关键想法是在训练期间看到的分配变化应在测试时告诉我们可能的变化。为了实现这一目标,我们将培训和测试域明确关联为从同一基础元分布中获取的,并提出了一个新的优化问题 - 分数风险最小化(QRM) - 要求该预测因子以很高的概率概括。然后,我们证明了QRM:(i)产生的预测因子,这些预测因素将具有所需概率的新域(给定足够多的域和样本); (ii)随着概括的所需概率接近一个,恢复因果预测因子。在我们的实验中,我们引入了针对DG的更全面的以分位数评估协议,并表明我们的算法在真实和合成数据上的最先进基准都优于最先进的基准。
translated by 谷歌翻译