我们为联合学习提出了一个简单的新聚合策略,赢得了米奇联邦肿瘤细分挑战2021(FETS),这是对机器学习界联盟学习的首次挑战。我们的方法解决了如何聚合在不同数据集上培训的多个模型的问题。概念上,我们提出了一种在平均不同模型时选择重量的新方法,从而扩展了最新的艺术状态(FADVG)。实证验证表明,与FEDAVG相比,我们的方法达到了分割性能的显着改善。
translated by 谷歌翻译
联合学习(FL)可以在不共享参与网站的数据的情况下协作学习深层学习模型。在医学图像分析中的FL相对较新,可开放增强功能。在这项研究中,我们提出了一种新的联邦学习方法,用于培训更广泛的模型。所提出的方法利用了客户选择中的随机性,也利用了联合平均过程。我们将FedDropOutvg与FL情景中的几种算法进行比较,用于现实世界多站点组织病理学图像分类任务。我们展示了通过FEDDROPOUDAVG,最终模型可以比其他FL方法更好地实现性能,并且更接近经典的深度学习模型,需要为集中培训共享所有数据。我们在大型数据集上测试训练有素的模型,由21个不同中心组成的120万像素瓷砖。为了评估所提出的方法的泛化能力,我们使用来自FL中的中心的中心的RET-OUT测试集,并且来自其他独立中心的看不见的数据,其数据未在联邦培训中使用。我们表明,拟议的方法比其他最先进的联邦培训方法更广泛。据我们所知,我们的是第一个在医学图像分析任务的联合设置中使用随机客户端和本地模型参数选择过程的研究。
translated by 谷歌翻译
In this work, we devise robust and efficient learning protocols for orchestrating a Federated Learning (FL) process for the Federated Tumor Segmentation Challenge (FeTS 2022). Enabling FL for FeTS setup is challenging mainly due to data heterogeneity among collaborators and communication cost of training. To tackle these challenges, we propose Robust Learning Protocol (RoLePRO) which is a combination of server-side adaptive optimisation (e.g., server-side Adam) and judicious parameter (weights) aggregation schemes (e.g., adaptive weighted aggregation). RoLePRO takes a two-phase approach, where the first phase consists of vanilla Federated Averaging, while the second phase consists of a judicious aggregation scheme that uses a sophisticated reweighting, all in the presence of an adaptive optimisation algorithm at the server. We draw insights from extensive experimentation to tune learning rates for the two phases.
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
使用联合学习(FL)协作培训模型的多个医疗机构已成为最大化数据驱动模型的潜力的有希望的解决方案,但医学图像中的非独立性和相同分布的(非IID)数据仍然是一个突出的挑战在真实的练习中。由不同扫描仪或协议引起的特征异质性在本地(客户端)和全局(服务器)优化中引入了学习过程中的漂移,这损害了收敛以及模型性能。许多以前的作品已经尝试通过在本地或全球范围内解决漂移来解决非IID问题,但如何共同解决两个基本耦合的漂移仍然不清楚。在这项工作中,我们专注于处理本地和全球漂移,并介绍一个名为HARMOFL的新协调框架。首先,我们建议通过将变换到频域的图像的幅度归一化以模仿统一的成像设置来减轻本地更新漂移,以便在跨本地客户端生成统一的特征空间。其次,基于谐波功能,我们设计了引导每个本地模型的客户重量扰动,以达到平坦的最佳状态,其中局部最佳解决方案的邻域面积具有均匀低损耗。如果没有任何额外的沟通成本,则扰动协助全局模型通过聚合几个局部平面OptimA来优化融合的最佳解决方案。理论上,我们已经分析了所提出的方法和经验上对三种医学图像分类和分割任务进行了广泛的实验,表明HARMOFL优于一系列具有有前途的收敛行为的最近最先进的方法。
translated by 谷歌翻译
在点击率(CTR)预测的联合学习(FL)中,用户的数据未共享以保护隐私。学习是通过在客户端设备上本地培训进行的,并仅将模型更改传达给服务器。有两个主要的挑战:(i)客户异质性,制作使用加权平均来汇总客户模型更新的FL算法的进步缓慢且学习结果不令人满意; (ii)由于每个实验所需的大量计算时间和资源,因此使用反复试验方法调整服务器学习率的困难。为了应对这些挑战,我们提出了一种简单的在线元学习方法,以学习汇总模型更新的策略,该方法根据客户属性适应客户的重要性并调整更新的步骤大小。我们在公共数据集上进行广泛的评估。我们的方法在收敛速度和最终学习结果的质量方面都大大优于最先进的方法。
translated by 谷歌翻译
联合学习,该学习,跨越客户的神经网络的重量,在医疗领域中获得了注意力,因为它可以在维护数据隐私的同时对分散数据的大型语料库进行培训。例如,这使得Covid-19对胸部X射线(CXR)图像进行Covid-19诊断的神经网络训练,而不会在多家医院收集患者CXR数据。遗憾的是,如果采用高度富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有富有效率的网络架构,权重的交换会很快消耗网络带宽。所谓的分流学习通过将神经网络划分为客户端和服务器部分来部分解决此问题,使得网络的客户端占用较少的广泛计算资源和带宽。但是,目前尚不清楚如何在不牺牲整体网络性能的情况下找到最佳分裂。为了合并这些方法,从而最大限度地提高了它们的不同优势,这里我们表明视觉变压器,最近开发的具有直接可分解配置的深度学习架构,理想地适合分裂学习而不会牺牲性能。即使在使用来自多个来源的CXR数据集之间模拟医院之间实际协作的非独立性和相同的数据分布,也能够实现与数据集中培训相当的性能。此外,提出的框架以及异构多任务客户端还改善了包括Covid-19诊断的单独任务性能,消除了与无数参数共享大权重的需求。我们的业绩肯定了变压器在医学成像中的协作学习的适用性,并为未来的现实界限铺平了前进的方式。
translated by 谷歌翻译
我们提供了一类用于强大的个性化联合学习的方法,称为FED+,该方法统一了许多联合学习算法。这类方法的主要优势是更好地适应联邦培训中发现的现实世界特征,例如各方缺乏IID数据,对异常值或散乱者的鲁棒性的需求以及在党派上表现良好的要求 - 特定数据集。我们通过问题公式实现这一目标,该问题使中央服务器能够采用可靠的方式来汇总本地模型,同时保持本地计算的结构完整。在各方跨各方的局部数据的异质性程度的情况下,我们为FED+提供了在不同(鲁棒)聚合方法下的convex和非凸损失函数的收敛保证。美联储+理论还可以处理包括散乱者在内的异质计算环境,没有其他假设;具体而言,融合结果涵盖了一般设置,在该设置中,各方跨各方的本地更新步骤的数量可能会有所不同。我们通过在标准基准数据集的广泛实验中证明了FED+的好处。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习技术,可以在避免明确的数据共享的同时进行协作模型培训。 FL算法的固有保护属性使其对医疗领域特别有吸引力。但是,如果有异质的客户数据分布,则标准FL方法是不稳定的,需要密集的超参数调整以实现最佳性能。常规的超参数优化算法在现实世界中的FL应用中是不切实际的,因为它们涉及大量的培训试验,而计算预算有限,这些试验通常是不起作用的。在这项工作中,我们提出了一种有效的增强学习(RL)的联合次数超参数优化算法,称为自动FEDRL,其中在线RL代理可以根据当前的培训进度动态调整每个客户的超参数。进行了广泛的实验以研究不同的搜索策略和RL代理。该方法的有效性在CIFAR-10数据集的异质数据分配以及两个现实世界中的医学图像分割数据集上进行了验证,用于胸部CT中的COVID-19变病变分段,腹部CT中的胰腺细分。
translated by 谷歌翻译
联邦学习(FL)是利用属于患者,人,公司或行业的敏感数据的合适解决方案,这些数据在刚性隐私约束下工作的难题。 FL主要或部分地支持数据隐私和安全问题,并提供促进促进多个边缘设备或组织的模型问题的替代方案,以使用许多本地数据培训全局模型而不具有它们。由其分布式自然引起的FL的非IID数据具有显着的性能下降和稳定性偏斜。本文介绍了一种新颖的方法,通过增强图像动态平衡客户端的数据分布,以解决FL的非IID数据问题。介绍的方法非常稳定模型培训,并将模型的测试精度从83.22%提高到89.43%,对于高度IID FL设定中的胸部X射线图像的多胸疾病检测。 IID,非IID和非IID的结果,联合培训表明,该方法可能有助于鼓励组织或研究人员开发更好的系统,以获得与数据隐私的数据的价值不仅适用于医疗保健,而且领域。
translated by 谷歌翻译
Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
translated by 谷歌翻译
最近,已提出了联合学习,以在边缘进行分布式模型培训。这种方法的原理是汇总在分布式客户端学习的模型,以获得新的更一般的“平均”模型(FedAvg)。然后将最终的模型重新分配给客户以进行进一步培训。迄今为止,最受欢迎的联合学习算法使用模型参数的坐标平均进行聚合。在本文中,我们进行了完整的一般数学融合分析,以评估联合学习框架中的聚合策略。由此,我们得出了新颖的聚合算法,这些算法能够通过根据损失的价值区分客户贡献来修改其模型架构。此外,我们超越了理论中介绍的假设,通过评估这些策略的性能,并通过将它们与IID和非IID框架中的分类任务中的一项进行比较,而没有其他假设。
translated by 谷歌翻译
联合学习是一个新兴的研究范式,用于在不共享患者数据的情况下启用协作培训深层学习模型。然而,来自不同机构的数据通常在机构中是异构的,这可能会降低使用联合学习培训的模型的性能。在这项研究中,我们提出了一种新的异质性感知联邦学习方法,克萨诸塞州,克服了联邦学习中数据异质性的性能下降。与需要复杂启发式培训或超参数调整的之前的联合方法不同,我们的Splitavg利用简单的网络分割和特征映射串联策略,以鼓励联合模型培训目标数据分布的无偏估计。我们使用七个最先进的联合学习方法进行比较Splitavg,使用中央托管的培训数据作为基准在综合和现实世界联邦数据集的套件上。我们发现,使用所有比较联合学习方法训练的模型的性能随着数据异质性的增加而显着降低。相比之下,SplitavG方法在所有异质设置下实现了与基线方法的可比结果,即它达到了糖尿病视网膜病变二进制分类数据集和骨骼年龄预测数据集的基线所获得的精度的96.2%和110.4%的平均绝对误差分别在高度异构的数据分区上。我们得出结论,拆分方法可以有效地克服跨机构数据分布的可变性的性能下降。实验结果还表明,Splitavg可以适用于不同的基础网络并广泛地到各种类型的医学成像任务。
translated by 谷歌翻译
通过允许多个临床站点在不集中数据集的情况下协作学习全球模型,在联邦学习(FL)下进行的医学图像分割是一个有希望的方向。但是,使用单个模型适应来自不同站点的各种数据分布非常具有挑战性。个性化的FL仅利用来自Global Server共享的部分模型参数来解决此问题,同时保留其余部分以适应每个站点本地培训中的数据分布。但是,大多数现有方法都集中在部分参数分裂上,而在本地培训期间,不考虑\ textit {textit {site Inter-inter insteriscisies},实际上,这可以促进网站上的知识交流,以使模型学习有益于改进模型学习本地准确性。在本文中,我们提出了一个个性化的联合框架,使用\ textbf {l} ocal \ textbf {c}启动(lc-fed),以利用\ textIt {feftrict-and prediction-lactic}中的位置间暂停。提高细分。具体而言,由于每个本地站点都对各种功能都有另一种关注,因此我们首先设计嵌入的对比度位点,并与通道选择操作结合以校准编码的功能。此外,我们建议利用预测级别的一致性的知识,以指导模棱两可地区的个性化建模,例如解剖界限。它是通过计算分歧感知图来校准预测来实现的。我们的方法的有效性已在具有不同方式的三个医学图像分割任务上进行了验证,在该任务中,我们的方法始终显示出与最先进的个性化FL方法相比的性能。代码可从https://github.com/jcwang123/fedlc获得。
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
联合学习(FL)可以通过各种不同远程数据源的机器学习模型的分布式计算,而无需将任何单独的数据传输到集中位置。这导致改进的模型的完全性,并且随着更多来源和较大的数据集被添加到联合中的计算和计算的有效缩放。然而,最近的成员攻击表明,当模型参数或摘要统计数据与中央站点共享时,有时可以泄露或推断出私有或敏感的个人数据,需要改进的安全解决方案。在这项工作中,我们提出了一种使用全同性全相治(FHE)的安全FL框架。具体而言,我们使用CKKS构造,近似浮点兼容方案,这些方案受益于密文包装和重新扫描。在我们对大型脑MRI数据集的评估中,我们使用建议的安全流动框架来培训深度学习模型,以预测分布式MRI扫描的一个人的年龄,一个共同的基准测试任务,并证明在学习表现中没有降级在加密和非加密的联合模型之间。
translated by 谷歌翻译
联合学习是一种新兴的范式,允许大规模分散学习,而无需在不同的数据所有者中共享数据,这有助于解决医学图像分析中数据隐私的关注。但是,通过现有方法对客户的标签一致性的要求很大程度上缩小了其应用程序范围。实际上,每个临床部位只能以部分或没有与其他站点重叠的某些感兴趣的器官注释某些感兴趣的器官。将这种部分标记的数据纳入统一联邦是一个未开发的问题,具有临床意义和紧迫性。这项工作通过使用新型联合多重编码U-NET(FED-MENU)方法来应对挑战,以进行多器官分割。在我们的方法中,提出了一个多编码的U-NET(菜单网络),以通过不同的编码子网络提取器官特异性功能。每个子网络都可以看作是特定风琴的专家,并为该客户培训。此外,为了鼓励不同子网络提取的特定器官特定功能具有信息性和独特性,我们通过设计辅助通用解码器(AGD)来规范菜单网络的训练。四个公共数据集上的广泛实验表明,我们的Fed-Menu方法可以使用具有优越性能的部分标记的数据集有效地获得联合学习模型,而不是由局部或集中学习方法培训的其他模型。源代码将在纸质出版时公开提供。
translated by 谷歌翻译
传统的深度学习方法(DL)需要在中央服务器上收集和处理的培训数据,这些中央服务器通常在保健等隐私敏感域中挑战。为此,提出了一种新的学习范式,称为联合学习(FL),在解决隐私和数据所有权问题的同时将DL的潜力带到了这些域。 FL使远程客户端能够在保持数据本地时学习共享ML模型。然而,传统的FL系统面临多种挑战,例如可扩展性,复杂的基础设施管理,并且由于空闲客户端而被浪费的计算和产生的成本。 FL系统的这些挑战与无服务器计算和功能 - AS-Service(FAAS)平台旨在解决的核心问题密切对齐。这些包括快速可扩展性,无基础设施管理,自动缩放为空闲客户端,以及每次使用付费计费模型。为此,我们为无服务器FL展示了一个新颖的系统和框架,称为不发烟。我们的系统支持多个商业和自主主机的FAAS提供商,可以在机构数据中心和边缘设备上部署在云端,内部部署。据我们所知,我们是第一个能够在一大面料的异构FAAS提供商中启用FL,同时提供安全性和差异隐私等重要功能。我们展示了全面的实验,即使用我们的系统可以成功地培训多达200个客户功能的不同任务,更容易实现。此外,我们通过将其与传统的FL系统进行比较来证明我们的方法的实际可行性,并表明它可以更便宜,更资源效率更便宜。
translated by 谷歌翻译
在医学领域,通常寻求多中心协作来通过利用患者和临床数据的异质性来产生更广泛的发现。但是,最近的隐私法规阻碍了共享数据的可能性,因此,提出了支持诊断和预后的基于机器学习的解决方案。联合学习(FL)旨在通过将基于AI的解决方案带入数据所有者,而仅共享需要汇总的本地AI模型或其部分,以避免这种限制。但是,大多数现有的联合学习解决方案仍处于起步阶段,并且由于缺乏可靠和有效的聚合计划能够保留本地学到的知识,从而显示出薄弱的隐私保护,因为可以从模型更新中重建实际数据,因此显示出几个缺点。此外,这些方法中的大多数,尤其是那些处理医学数据的方法,都依赖于一种集中的分布式学习策略,该策略构成了稳健性,可伸缩性和信任问题。在本文中,我们提出了一种分散的分布式方法,该方法从经验重播和生成对抗性研究中利用概念,有效地整合了本地节点的功能,从而提供了能够在维持隐私的同时跨多个数据集进行概括的模型。为了模拟现实的非i.i.d,使用多个数据集对两项任务进行了两项任务测试:结核病和黑色素瘤分类。数据方案。结果表明,我们的方法实现了与标准(未赋予)学习和联合方法相当的性能(因此,更有利)。
translated by 谷歌翻译