通过将熵编解码器应用于学习的数据分布,神经压缩机在压缩比方面显着优于传统编解码器。但是,神经网络的高推断潜伏期阻碍了实际应用中神经压缩机的部署。在这项工作中,我们提出了仅整数离散流(IODF),这是一种具有仅整数算术的有效神经压缩机。我们的工作建立在整数离散流的基础上,该流程包括离散随机变量之间的可逆转换。我们提出了基于8位量化的纯整数算术的有效可逆转换。我们的可逆转换配备了可学习的二进制门,以在推理过程中去除冗余过滤器。我们在GPU上使用Tensorrt部署IODF,与现有最快的神经压缩机相比,达到10倍推理的速度,同时保留了Imagenet32和Imagenet64上的高压缩率。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
现在,存储快速增长的大数据是不可取的,这需要高性能的无损压缩技术。基于可能性的生成模型在无损压缩中获得了成功,其中基于流基的模型在允许与映射映射进行精确的数据似然优化时是可取的。然而,常见的连续流是矛盾的,并且编码方案的离散性,这需要1)对流量模型的严格约束来降低性能或2)编码许多减少效率的诸多的映射误差。在本文中,我们调查了对无损压缩的音量保持流动,并显示了一个没有错误的自由度映射。我们提出了来自总体积保护流的数值可释放的流量(IVPF)。通过在流模型上引入新颖的计算算法,在没有任何数值误差的情况下实现精确的映射映射。我们还提出了一种基于IVPF的无损压缩算法。各种数据集的实验表明,基于IVPF的算法通过轻量级压缩算法实现了最先进的压缩比。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried out using integer-only arithmetic, which can be implemented more efficiently than floating point inference on commonly available integer-only hardware. We also co-design a training procedure to preserve end-to-end model accuracy post quantization. As a result, the proposed quantization scheme improves the tradeoff between accuracy and on-device latency. The improvements are significant even on MobileNets, a model family known for run-time efficiency, and are demonstrated in ImageNet classification and COCO detection on popular CPUs.
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译
模型量化已成为加速深度学习推理的不可或缺的技术。虽然研究人员继续推动量化算法的前沿,但是现有量化工作通常是不可否认的和不可推销的。这是因为研究人员不选择一致的训练管道并忽略硬件部署的要求。在这项工作中,我们提出了模型量化基准(MQBench),首次尝试评估,分析和基准模型量化算法的再现性和部署性。我们为实际部署选择多个不同的平台,包括CPU,GPU,ASIC,DSP,并在统一培训管道下评估广泛的最新量化算法。 MQBENCK就像一个连接算法和硬件的桥梁。我们进行全面的分析,并找到相当大的直观或反向直观的见解。通过对齐训练设置,我们发现现有的算法在传统的学术轨道上具有大致相同的性能。虽然用于硬件可部署量化,但有一个巨大的精度差距,仍然不稳定。令人惊讶的是,没有现有的算法在MQBench中赢得每一项挑战,我们希望这项工作能够激发未来的研究方向。
translated by 谷歌翻译
It has been witnessed that learned image compression has outperformed conventional image coding techniques and tends to be practical in industrial applications. One of the most critical issues that need to be considered is the non-deterministic calculation, which makes the probability prediction cross-platform inconsistent and frustrates successful decoding. We propose to solve this problem by introducing well-developed post-training quantization and making the model inference integer-arithmetic-only, which is much simpler than presently existing training and fine-tuning based approaches yet still keeps the superior rate-distortion performance of learned image compression. Based on that, we further improve the discretization of the entropy parameters and extend the deterministic inference to fit Gaussian mixture models. With our proposed methods, the current state-of-the-art image compression models can infer in a cross-platform consistent manner, which makes the further development and practice of learned image compression more promising.
translated by 谷歌翻译
Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources. To address this limitation, we introduce "deep compression", a three stage pipeline: pruning, trained quantization and Huffman coding, that work together to reduce the storage requirement of neural networks by 35× to 49× without affecting their accuracy. Our method first prunes the network by learning only the important connections. Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman coding. After the first two steps we retrain the network to fine tune the remaining connections and the quantized centroids. Pruning, reduces the number of connections by 9× to 13×; Quantization then reduces the number of bits that represent each connection from 32 to 5. On the ImageNet dataset, our method reduced the storage required by AlexNet by 35×, from 240MB to 6.9MB, without loss of accuracy. Our method reduced the size of VGG-16 by 49× from 552MB to 11.3MB, again with no loss of accuracy. This allows fitting the model into on-chip SRAM cache rather than off-chip DRAM memory. Our compression method also facilitates the use of complex neural networks in mobile applications where application size and download bandwidth are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.
translated by 谷歌翻译
最近,低精确的深度学习加速器(DLA)由于其在芯片区域和能源消耗方面的优势而变得流行,但是这些DLA上的低精确量化模型导致严重的准确性降解。达到高精度和高效推断的一种方法是在低精度DLA上部署高精度神经网络,这很少被研究。在本文中,我们提出了平行的低精确量化(PALQUANT)方法,该方法通过从头开始学习并行低精度表示来近似高精度计算。此外,我们提出了一个新型的循环洗牌模块,以增强平行低精度组之间的跨组信息通信。广泛的实验表明,PALQUANT的精度和推理速度既优于最先进的量化方法,例如,对于RESNET-18网络量化,PALQUANT可以获得0.52 \%的准确性和1.78 $ \ times $ speedup同时获得在最先进的2位加速器上的4位反片机上。代码可在\ url {https://github.com/huqinghao/palquant}中获得。
translated by 谷歌翻译
胶囊网络(CAPSNET)是图像处理的新兴趋势。与卷积神经网络相反,CAPSNET不容易受到对象变形的影响,因为对象的相对空间信息在整个网络中保存。但是,它们的复杂性主要与胶囊结构和动态路由机制有关,这使得以其原始形式部署封闭式以由小型微控制器(MCU)供电的设备几乎是不合理的。在一个智力从云到边缘迅速转移的时代,这种高复杂性对在边缘的采用capsnets的采用构成了严重的挑战。为了解决此问题,我们提出了一个API,用于执行ARM Cortex-M和RISC-V MCUS中的量化capsnet。我们的软件内核扩展了ARM CMSIS-NN和RISC-V PULP-NN,以用8位整数作为操作数支持胶囊操作。随之而来的是,我们提出了一个框架,以执行CAPSNET的训练后量化。结果显示,记忆足迹的减少近75%,准确性损失范围从0.07%到0.18%。在吞吐量方面,我们的ARM Cortex-M API可以分别在仅119.94和90.60毫秒(MS)的中型胶囊和胶囊层执行(STM32H7555ZIT6U,Cortex-M7 @ 480 MHz)。对于GAP-8 SOC(RISC-V RV32IMCXPULP @ 170 MHz),延迟分别降至7.02和38.03 ms。
translated by 谷歌翻译
最近的工作表明,变异自动编码器(VAE)与速率失真理论之间有着密切的理论联系。由此激发,我们从生成建模的角度考虑了有损图像压缩的问题。从最初是为数据(图像)分布建模设计的Resnet VAE开始,我们使用量化意识的后验和先验重新设计其潜在变量模型,从而实现易于量化和熵编码的图像压缩。除了改进的神经网络块外,我们还提出了一类强大而有效的有损图像编码器类别,超过了自然图像(有损)压缩的先前方法。我们的模型以粗略的方式压缩图像,并支持并行编码和解码,从而在GPU上快速执行。
translated by 谷歌翻译
据估计,2020年世界生产了59美元(5.9美元×13} GB $),导致数据存储和传输的巨大成本。幸运的是,深度生成模型的最近进步已经刺激了一类新的所谓的“神经压缩”算法,这在压缩比方面显着优于传统的编解码器。不幸的是,由于其带宽有限,神经压缩加法器的应用很少的商业利益;因此,开发高效框架具有重要的重要性。在本文中,我们讨论了使用正常化流动的无损压缩,这已经表现出了实现高压缩比的很大容量。因此,我们介绍了iflow,一种实现有效的无损压缩的新方法。我们首先提出模块化尺度变换(MST)和基于MST的数值可逆的流动变换的新颖家族。然后我们介绍统一的基础转换系统(UBC),将快速均匀分布编解码器结合到IFLow中,从而实现有效的压缩。 IFLow实现最先进的压缩比率,比其他高性能方案更快5倍。此外,本文提出的技术可用于加速广泛的基于流的算法的编码时间。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
We introduce a method to train Quantized Neural Networks (QNNs) -neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At traintime the quantized weights and activations are used for computing the parameter gradients. During the forward pass, QNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations. As a result, power consumption is expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves 51% top-1 accuracy. Moreover, we quantize the parameter gradients to 6-bits as well which enables gradients computation using only bit-wise operation. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not least, we programmed a binary matrix multiplication GPU kernel with which it is possible to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The QNN code is available online.
translated by 谷歌翻译
This paper proposed a Soft Filter Pruning (SFP) method to accelerate the inference procedure of deep Convolutional Neural Networks (CNNs). Specifically, the proposed SFP enables the pruned filters to be updated when training the model after pruning. SFP has two advantages over previous works: (1) Larger model capacity. Updating previously pruned filters provides our approach with larger optimization space than fixing the filters to zero. Therefore, the network trained by our method has a larger model capacity to learn from the training data. (2) Less dependence on the pretrained model. Large capacity enables SFP to train from scratch and prune the model simultaneously. In contrast, previous filter pruning methods should be conducted on the basis of the pre-trained model to guarantee their performance. Empirically, SFP from scratch outperforms the previous filter pruning methods. Moreover, our approach has been demonstrated effective for many advanced CNN architectures. Notably, on ILSCRC-2012, SFP reduces more than 42% FLOPs on ResNet-101 with even 0.2% top-5 accuracy improvement, which has advanced the state-of-the-art. Code is publicly available on GitHub: https://github.com/he-y/softfilter-pruning
translated by 谷歌翻译