Segmentation of lidar data is a task that provides rich, point-wise information about the environment of robots or autonomous vehicles. Currently best performing neural networks for lidar segmentation are fine-tuned to specific datasets. Switching the lidar sensor without retraining on a big set of annotated data from the new sensor creates a domain shift, which causes the network performance to drop drastically. In this work we propose a new method for lidar domain adaption, in which we use annotated panoptic lidar datasets and recreate the recorded scenes in the structure of a different lidar sensor. We narrow the domain gap to the target data by recreating panoptic data from one domain in another and mixing the generated data with parts of (pseudo) labeled target domain data. Our method improves the nuScenes to SemanticKITTI unsupervised domain adaptation performance by 15.2 mean Intersection over Union points (mIoU) and by 48.3 mIoU in our semi-supervised approach. We demonstrate a similar improvement for the SemanticKITTI to nuScenes domain adaptation by 21.8 mIoU and 51.5 mIoU, respectively. We compare our method with two state of the art approaches for semantic lidar segmentation domain adaptation with a significant improvement for unsupervised and semi-supervised domain adaptation. Furthermore we successfully apply our proposed method to two entirely unlabeled datasets of two state of the art lidar sensors Velodyne Alpha Prime and InnovizTwo, and train well performing semantic segmentation networks for both.
translated by 谷歌翻译
为了训练一个表现出色的神经网络进行语义细分,至关重要的是,拥有一个具有可用地面真相的大数据集以供网络概括为看不见的数据。在本文中,我们提出了新颖的点云增强方法,以人为地使数据集多样化。我们以传感器为中心的方法保持数据结构与LIDAR传感器功能一致。由于这些新方法,我们能够通过高价值实例丰富低价值数据,并创建全新的场景。我们使用公共Semantickitti数据集验证了在多个神经网络上的方法,并证明与各自的基线相比,所有网络都会有所改善。此外,我们表明我们的方法能够使用非常小的数据集,节省注释时间,培训时间和相关成本。
translated by 谷歌翻译
当标签稀缺时,域的适应性是使学习能够学习的重要任务。尽管大多数作品仅着眼于图像模式,但有许多重要的多模式数据集。为了利用多模式的域适应性,我们提出了跨模式学习,在这种学习中,我们通过相互模仿在两种模式的预测之间执行一致性。我们限制了我们的网络,以对未标记的目标域数据进行正确预测,并在标记的数据和跨模式的一致预测中进行预测。在无监督和半监督的域适应设置中进行的实验证明了这种新型域适应策略的有效性。具体而言,我们评估了从2D图像,3D点云或两者都从3D语义分割的任务进行评估。我们利用最近的驾驶数据集生产各种域名适应场景,包括场景布局,照明,传感器设置和天气以及合成到现实的设置的变化。我们的方法在所有适应方案上都显着改善了以前的单模式适应基线。我们的代码可在https://github.com/valeoai/xmuda_journal上公开获取
translated by 谷歌翻译
不同制造商和激光雷达传感器模型之间的采样差异导致对象的不一致表示。当在其他类型的楣上测试为一个激光雷达培训的3D探测器时,这导致性能下降。 LIDAR制造业的显着进展使机械,固态和最近可调节的扫描图案LIDARS的进展带来了进展。对于后者,现有工作通常需要微调模型,每次调整扫描模式,这是不可行的。我们通过提出一种小型无监督的多目标域适配框架,明确地处理采样差异,参见,用于在固定和灵活的扫描图案Lidars上传送最先进的3D探测器的性能,而无需微调模型通过最终用户。我们的方法在将其传递到检测网络之前,将底层几何形状插值并将其从不同LIDAR的对象的扫描模式正常化。我们展示了在公共数据集上看到的有效性,实现最先进的结果,并另外为新颖的高分辨率LIDAR提供定量结果,以证明我们框架的行业应用。此数据集和我们的代码将公开可用。
translated by 谷歌翻译
LIDAR语义分割提供有关环境的3D语义信息,在其决策过程中为智能系统提供基本提示。深度神经网络正在实现这项任务的大型公共基准的最先进结果。不幸的是,找到概括井或适应其他域的模型,其中数据分布不同,仍然是一个重大挑战。这项工作解决了LIDAR语义分段模型的无监督域适应问题。我们的方法将新颖的想法结合在最新的最先进的方法之上,并产生了新的最先进的结果。我们提出了简单但有效的策略,以通过对齐输入空间的数据分布来减少域移位。此外,我们提出了一种基于学习的方法,使目标域的语义类的分布对准到源域。呈现的消融研究表明,每个部分如何促成最终表现。我们的策略显示在三个不同的域上运行的比较以前的域适应方法。
translated by 谷歌翻译
3D autonomous driving semantic segmentation using deep learning has become, a well-studied subject, providing methods that can reach very high performance. Nonetheless, because of the limited size of the training datasets, these models cannot see every type of object and scenes found in real-world applications. The ability to be reliable in these various unknown environments is called domain generalization. Despite its importance, domain generalization is relatively unexplored in the case of 3D autonomous driving semantic segmentation. To fill this gap, this paper presents the first benchmark for this application by testing state-of-the-art methods and discussing the difficulty of tackling LiDAR domain shifts. We also propose the first method designed to address this domain generalization, which we call 3DLabelProp. This method relies on leveraging the geometry and sequentiality of the LiDAR data to enhance its generalization performances by working on partially accumulated point clouds. It reaches a mIoU of 52.6% on SemanticPOSS while being trained only on SemanticKITTI, making it state-of-the-art method for generalization (+7.4% better than the second best method). The code for this method will be available on Github.
translated by 谷歌翻译
已广泛研究从合成综合数据转移到实际数据,以减轻各种计算机视觉任务(如语义分割)中的数据注释约束。然而,由于缺乏大规模合成数据集和有效的转移方法,该研究专注于2D图像及其在3D点云分割的同行落后滞后。我们通过收集Synlidar来解决这个问题,这是一个大规模合成的LIDAR数据集,其中包含具有精确的几何形状和综合语义类的Point-Wise带注释点云。 Synlidar从​​具有丰富的场景和布局的多个虚拟环境中收集,该布局由超过190亿点的32个语义课程组成。此外,我们设计PCT,一种新型点云转换器,有效地减轻了合成和实点云之间的差距。具体地,我们将合成与实际间隙分解成外观部件和稀疏性分量,并单独处理它们,这会大大改善点云转换。我们在三次转移学习设置中进行了广泛的实验,包括数据增强,半监督域适应和无监督域适应。广泛的实验表明,Synlidar提供了用于研究3D转移的高质量数据源,所提出的PCT在三个设置上一致地实现了优越的点云平移。 Synlidar项目页面:\ url {https://github.com/xiaoaoran/synlidar}
translated by 谷歌翻译
Paris-Carla-3d是由移动激光器和相机系统构建的几个浓彩色点云的数据集。数据由两组具有来自开源Carla模拟器(700百万分)的合成数据和在巴黎市中获取的真实数据(6000万分),因此Paris-Carla-3d的名称。此数据集的一个优点是在开源Carla模拟器中模拟了相同的LIDAR和相机平台,因为用于生产真实数据的开源Carla Simulator。此外,使用Carla的语义标记的手动注释在真实数据上执行,允许将转移方法从合成到实际数据进行测试。该数据集的目的是提供一个具有挑战性的数据集,以评估和改进户外环境3D映射的困难视觉任务的方法:语义分段,实例分段和场景完成。对于每项任务,我们描述了评估协议以及建立基线的实验。
translated by 谷歌翻译
Domain adaptation for Cross-LiDAR 3D detection is challenging due to the large gap on the raw data representation with disparate point densities and point arrangements. By exploring domain-invariant 3D geometric characteristics and motion patterns, we present an unsupervised domain adaptation method that overcomes above difficulties. First, we propose the Spatial Geometry Alignment module to extract similar 3D shape geometric features of the same object class to align two domains, while eliminating the effect of distinct point distributions. Second, we present Temporal Motion Alignment module to utilize motion features in sequential frames of data to match two domains. Prototypes generated from two modules are incorporated into the pseudo-label reweighting procedure and contribute to our effective self-training framework for the target domain. Extensive experiments show that our method achieves state-of-the-art performance on cross-device datasets, especially for the datasets with large gaps captured by mechanical scanning LiDARs and solid-state LiDARs in various scenes. Project homepage is at https://github.com/4DVLab/CL3D.git
translated by 谷歌翻译
自动驾驶汽车必须在3D中检测其他车辆和行人,以计划安全路线并避免碰撞。基于深度学习的最先进的3D对象探测器已显示出有希望的准确性,但容易过度拟合域特质,使它们在新环境中失败 - 如果自动驾驶汽车旨在自动操作,则是一个严重的问题。在本文中,我们提出了一种新颖的学习方法,该方法通过在目标域中的伪标记上微调检测器,从而大大减少这一差距,我们的方法在车辆停放时会根据先前记录的驾驶序列的重播而生成的差距。在这些重播中,随着时间的推移会跟踪对象,并且检测被插值和外推 - 至关重要的是利用未来的信息来捕获硬病例。我们在五个自动驾驶数据集上显示,对这些伪标签上的对象检测器进行微调大大减少了域间隙到新的驾驶环境,从而极大地提高了准确性和检测可靠性。
translated by 谷歌翻译
Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.
translated by 谷歌翻译
3D激光雷达语义细分对于自动驾驶是基础。最近已经提出了几种用于点云数据的无监督域适应性(UDA)方法,以改善不同传感器和环境的模型概括。研究图像域中研究UDA问题的研究人员表明,样品混合可以减轻域的转移。我们提出了一种针对点云UDA的样品混合的新方法,即组成语义混合(Cosmix),这是基于样品混合的第一种UDA方法。 Cosmix由一个两分支对称网络组成,该网络可以同时处理标记的合成数据(源)和现实世界中未标记的点云(目标)。每个分支通过从另一个域中混合选定的数据来在一个域上运行,并使用源标签和目标伪标签的语义信息。我们在两个大规模数据集上评估Cosmix,表明它的表现要优于最先进的方法。我们的代码可在https://github.com/saltoricristiano/cosmix-uda上找到。
translated by 谷歌翻译
LIDAR点云通常通过连续旋转LIDAR传感器扫描,捕获周围环境的精确几何形状,并且对于许多自主检测和导航任务至关重要。尽管已经开发了许多3D深度体系结构,但是在分析和理解点云数据中,有效收集和大量点云的注释仍然是一个主要挑战。本文介绍了Polarmix,这是一种简单且通用的点云增强技术,但可以在不同的感知任务和场景中有效地减轻数据约束。 Polarmix通过两种跨扫描扩展策略来富含点云分布,并保留点云保真度,这些杂志沿扫描方向切割,编辑和混合点云。第一个是场景级交换,它交换了两个LiDAR扫描的点云扇区,这些扫描沿方位角轴切割。第二个是实例级旋转和粘贴,它是从一个激光雷达扫描中进行的点点实例,用多个角度旋转它们(以创建多个副本),然后将旋转点实例粘贴到其他扫描中。广泛的实验表明,Polarmix在不同的感知任务和场景中始终如一地达到卓越的性能。此外,它可以用作各种3D深度体系结构的插件,并且对于无监督的域适应性也很好。
translated by 谷歌翻译
LIDAR传感器提供有关周围场景的丰富3D信息,并且对于自动驾驶汽车的任务(例如语义细分,对象检测和跟踪)变得越来越重要。模拟激光雷达传感器的能力将加速自动驾驶汽车的测试,验证和部署,同时降低成本并消除现实情况下的测试风险。为了解决以高保真度模拟激光雷达数据的问题,我们提出了一条管道,该管道利用移动映射系统获得的现实世界点云。基于点的几何表示,更具体地说,已经证明了它们能够在非常大点云中准确对基础表面进行建模的能力。我们引入了一种自适应夹层生成方法,该方法可以准确地对基础3D几何形状进行建模,尤其是对于薄结构。我们还通过在GPU上铸造Ray铸造的同时,在有效处理大点云的同时,我们还开发了更快的时间激光雷达模拟。我们在现实世界中测试了激光雷达的模拟,与基本的碎片和网格划分技术相比,表现出定性和定量结果,证明了我们的建模技术的优势。
translated by 谷歌翻译
点云的Panoptic分割是一种重要的任务,使自动车辆能够使用高精度可靠的激光雷达传感器来理解其附近。现有的自上而下方法通过将独立的任务特定网络或转换方法从图像域转换为忽略激光雷达数据的复杂性,因此通常会导致次优性性能来解决这个问题。在本文中,我们提出了新的自上而下的高效激光乐光线分割(有效的LID)架构,该架构解决了分段激光雷达云中的多种挑战,包括距离依赖性稀疏性,严重的闭塞,大规模变化和重新投影误差。高效地板包括一种新型共享骨干,可以通过加强的几何变换建模容量进行编码,并聚合语义丰富的范围感知多尺度特征。它结合了新的不变语义和实例分段头以及由我们提出的Panoptic外围损耗功能监督的Panoptic Fusion模块。此外,我们制定了正则化的伪标签框架,通过对未标记数据的培训进行进一步提高高效性的性能。我们在两个大型LIDAR数据集中建议模型基准:NUSCENES,我们还提供了地面真相注释和Semantickitti。值得注意的是,高效地将在两个数据集上设置新的最先进状态。
translated by 谷歌翻译
本文提出了一个统一的神经网络结构,用于联合3D对象检测和点云分段。我们利用检测和分割标签的丰富监督,而不是使用其中一个。另外,基于广泛应用于3D场景和对象理解的隐式功能,提出了基于单级对象检测器的扩展。扩展分支从对象检测模块作为输入采用最终特征映射,并产生隐式功能,为其对应的体素中心产生每个点的语义分布。我们展示了我们在NUSCENES-LIDARSEG上的结构的表现,这是一个大型户外数据集。我们的解决方案在与对象检测解决方案相比,在3D对象检测和点云分割中实现了针对现有的方法的竞争结果。通过实验验证了所提出的方法的有效弱监管语义分割的能力。
translated by 谷歌翻译
具有丰富注释的高质量结构化数据是处理道路场景的智能车辆系统中的关键组件。但是,数据策展和注释需要大量投资并产生低多样性的情况。最近对合成数据的兴趣日益增长,提出了有关此类系统改进范围的问题,以及产生大量和变化的模拟数据所需的手动工作量。这项工作提出了一条合成数据生成管道,该管道利用现有数据集(如Nuscenes)来解决模拟数据集中存在的困难和域间隙。我们表明,使用现有数据集的注释和视觉提示,我们可以促进自动化的多模式数据生成,模仿具有高保真性的真实场景属性,以及以物理意义的方式使样本多样化的机制。我们通过提供定性和定量实验,并通过使用真实和合成数据来证明MIOU指标的改进,以实现CityScapes和Kitti-Step数据集的语义分割。所有相关代码和数据均在GitHub(https://github.com/shubham1810/trove_toolkit)上发布。
translated by 谷歌翻译
Panoptic现场了解和跟踪动态代理对于机器人和自动化车辆至关重要,以在城市环境中导航。由于LiDAR提供了方案的精确照明和几何描绘,使用LIDAR点云执行这些任务提供可靠的预测。然而,现有数据集缺乏城市场景类型的多样性,并且具有有限数量的动态对象实例,其阻碍了这些任务的学习以及开发方法的可信基准。在本文中,我们介绍了大规模的Panoptic Nuscenes基准数据集,它扩展了我们流行的NUSCENES DataSet,具有用于语义分割,Panoptic分段和Panoptic跟踪任务的Pock-Wise Trountruth annotations。为了便于比较,我们为我们提出的数据集提供了几个任务的强大基线。此外,我们分析了Panoptic跟踪的现有度量标准的缺点,并提出了一种解决问题的小说实例的Pat度量。我们提供详尽的实验,展示了Panoptic Nuscenes与现有数据集相比的效用,并在Nuscenes.org提供的在线评估服务器。我们认为,此扩展将加快新颖的现场了解动态城市环境的新方法研究。
translated by 谷歌翻译
使用3D激光点云数据的对象检测和语义分割需要昂贵的注释。我们提出了一种数据增强方法,该方法多次利用已经注释的数据。我们提出了一个重用真实数据的增强框架,自动在场景中找到合适的位置要增加,并明确地处理遮挡。由于使用真实数据,新插入的物体在增强中的扫描点维持了激光雷达的物理特征,例如强度和射线表。该管道证明在训练3D对象检测和语义分割的最佳模型中具有竞争力。新的增强为稀有和基本类别提供了显着的性能增长,尤其是在Kitti对象检测中“硬”行人级的平均精度增益为6.65%,或者2.14表示在Semantickitti细分挑战中获得的iOU在艺术状态下的增益。
translated by 谷歌翻译
模拟逼真的传感器是自主系统数据生成的挑战,通常涉及精心手工的传感器设计,场景属性和物理建模。为了减轻这一点,我们引入了一条管道,用于对逼真的激光雷达传感器进行数据驱动的模拟。我们提出了一个模型,该模型可以在RGB图像和相应的LIDAR功能(例如Raydrop或每点强度)之间直接从真实数据集中进行映射。我们表明,我们的模型可以学会编码逼真的效果,例如透明表面上的掉落点或反射材料上的高强度回报。当应用于现成的模拟器软件提供的天真播放点云时,我们的模型通过根据场景的外观预测强度和删除点来增强数据,以匹配真实的激光雷达传感器。我们使用我们的技术来学习两个不同的LIDAR传感器的模型,并使用它们相应地改善模拟的LiDAR数据。通过车辆细分的示例任务,我们表明通过我们的技术增强模拟点云可以改善下游任务性能。
translated by 谷歌翻译