3D激光雷达语义细分对于自动驾驶是基础。最近已经提出了几种用于点云数据的无监督域适应性(UDA)方法,以改善不同传感器和环境的模型概括。研究图像域中研究UDA问题的研究人员表明,样品混合可以减轻域的转移。我们提出了一种针对点云UDA的样品混合的新方法,即组成语义混合(Cosmix),这是基于样品混合的第一种UDA方法。 Cosmix由一个两分支对称网络组成,该网络可以同时处理标记的合成数据(源)和现实世界中未标记的点云(目标)。每个分支通过从另一个域中混合选定的数据来在一个域上运行,并使用源标签和目标伪标签的语义信息。我们在两个大规模数据集上评估Cosmix,表明它的表现要优于最先进的方法。我们的代码可在https://github.com/saltoricristiano/cosmix-uda上找到。
translated by 谷歌翻译
3D点云语义细分对于自动驾驶至关重要。文献中的大多数方法都忽略了一个重要方面,即在处理动态场景时如何处理域转移。这可能会极大地阻碍自动驾驶车辆的导航能力。本文推进了该研究领域的最新技术。我们的第一个贡献包括分析点云细分中的新的未开发的方案,即无源的在线无监督域改编(SF-OUDA)。我们在实验上表明,最新的方法具有相当有限的能力,可以使预训练的深网模型以在线方式看不到域。我们的第二个贡献是一种依赖于自适应自我训练和几何传播的方法,以在线调整预训练的源模型,而无需源数据或目标标签。我们的第三个贡献是在一个充满挑战的设置中研究sf-ouda,其中源数据是合成的,目标数据是现实世界中捕获的点云。我们将最近的Synlidar数据集用作合成源,并引入了两个新的合成(源)数据集,这些数据集可以刺激未来的综合自动驾驶研究。我们的实验显示了我们分割方法对数千个现实点云的有效性。代码和合成数据集可在https://github.com/saltoricristiano/gipso-sfouda上找到。
translated by 谷歌翻译
LIDAR点云通常通过连续旋转LIDAR传感器扫描,捕获周围环境的精确几何形状,并且对于许多自主检测和导航任务至关重要。尽管已经开发了许多3D深度体系结构,但是在分析和理解点云数据中,有效收集和大量点云的注释仍然是一个主要挑战。本文介绍了Polarmix,这是一种简单且通用的点云增强技术,但可以在不同的感知任务和场景中有效地减轻数据约束。 Polarmix通过两种跨扫描扩展策略来富含点云分布,并保留点云保真度,这些杂志沿扫描方向切割,编辑和混合点云。第一个是场景级交换,它交换了两个LiDAR扫描的点云扇区,这些扫描沿方位角轴切割。第二个是实例级旋转和粘贴,它是从一个激光雷达扫描中进行的点点实例,用多个角度旋转它们(以创建多个副本),然后将旋转点实例粘贴到其他扫描中。广泛的实验表明,Polarmix在不同的感知任务和场景中始终如一地达到卓越的性能。此外,它可以用作各种3D深度体系结构的插件,并且对于无监督的域适应性也很好。
translated by 谷歌翻译
当标签稀缺时,域的适应性是使学习能够学习的重要任务。尽管大多数作品仅着眼于图像模式,但有许多重要的多模式数据集。为了利用多模式的域适应性,我们提出了跨模式学习,在这种学习中,我们通过相互模仿在两种模式的预测之间执行一致性。我们限制了我们的网络,以对未标记的目标域数据进行正确预测,并在标记的数据和跨模式的一致预测中进行预测。在无监督和半监督的域适应设置中进行的实验证明了这种新型域适应策略的有效性。具体而言,我们评估了从2D图像,3D点云或两者都从3D语义分割的任务进行评估。我们利用最近的驾驶数据集生产各种域名适应场景,包括场景布局,照明,传感器设置和天气以及合成到现实的设置的变化。我们的方法在所有适应方案上都显着改善了以前的单模式适应基线。我们的代码可在https://github.com/valeoai/xmuda_journal上公开获取
translated by 谷歌翻译
将从标记的源域中学习的知识传输到未经监督域适应的原始目标域(UDA)对于自主驱动系统的可扩展部署至关重要。 UDA中最先进的方法经常采用关键概念:利用来自源域(带地理)的联合监督信号和目标域(带伪标签)进行自培训。在这项工作中,我们在这方面改进并延伸。我们介绍了Conda,一种基于连接的域改性框架,用于LIDAR语义分割,:(1)构建由来自源极和目标域的细粒度交换信号组成的中间域,而不会破坏自我周围物体和背景的语义一致性。车辆; (2)利用中级领域进行自我培训。此外,为了改善源域的网络培训和中间域的自我训练,我们提出了一种抗锯齿规范器和熵聚合器,以减少混叠伪影和嘈杂的目标预测的不利影响。通过广泛的实验,我们证明,与现有技术相比,公园在减轻域间隙方面明显更有效。
translated by 谷歌翻译
LIDAR语义分割提供有关环境的3D语义信息,在其决策过程中为智能系统提供基本提示。深度神经网络正在实现这项任务的大型公共基准的最先进结果。不幸的是,找到概括井或适应其他域的模型,其中数据分布不同,仍然是一个重大挑战。这项工作解决了LIDAR语义分段模型的无监督域适应问题。我们的方法将新颖的想法结合在最新的最先进的方法之上,并产生了新的最先进的结果。我们提出了简单但有效的策略,以通过对齐输入空间的数据分布来减少域移位。此外,我们提出了一种基于学习的方法,使目标域的语义类的分布对准到源域。呈现的消融研究表明,每个部分如何促成最终表现。我们的策略显示在三个不同的域上运行的比较以前的域适应方法。
translated by 谷歌翻译
作为一种流行的几何表示,点云在3D视觉中引起了很多关注,导致自动驾驶和机器人中的许多应用。在点云上学习一个重要的尚未解决的问题是,如果使用不同的过程或使用不同的传感器捕获,则相同对象的点云可以具有显着的几何变化。这些不一致地诱导域间隙,使得在一个域上培训的神经网络可能无法概括他人。减少域间隙的典型技术是执行逆势训练,以便特征空间中的点云可以对齐。然而,对抗性训练易于落入退化的局部最小值,导致负适应性收益。在这里,我们提出了一种简单而有效的方法,可以通过采用学习几何感知含义的自我监督任务来提出对点云的无监督域适应的方法,这在一次拍摄中扮演两个关键角色。首先,通过对下游任务的隐式表示保留点云中的几何信息。更重要的是,可以在隐式空间中有效地学习域特定变体。我们还提出了一种自适应策略,以计算由于在实践中缺乏形状模型而计算任意点云的无符号距离场。当结合任务丢失时,所提出的优先表现出最先进的无监督域适应方法,依赖于对抗域对齐和更复杂的自我监督任务。我们的方法在PointDA-10和Graspnet数据集上进行评估。代码和培训的型号将公开可用。
translated by 谷歌翻译
深度学习方法在3D语义细分中取得了显着的成功。但是,收集密集注释的现实世界3D数据集非常耗时且昂贵。关于合成数据和对现实世界情景的培训模型成为一种吸引人的选择,但不幸的是,臭名昭著的领域变化。在这项工作中,我们提出了一个面向数据的域适应性(DODA)框架,以减轻由不同的感应机制和跨域的布局放置引起的模式和上下文差距。我们的DODA涵盖了虚拟扫描模拟,以模仿现实世界中的点云图案和尾声的长方体混合,以减轻基于Cuboid的中间域的内部环境差距。 3D室内语义分割上的第一个无监督的SIM到运行适应基准也构建在3D-Front,Scannet和S3DIS上,以及7种流行的无监督域适应(UDA)方法。我们的DODA在3D -Front-> scannet和3d -Front-> S3DIS上都超过了13%的UDA方法。代码可从https://github.com/cvmi-lab/doda获得。
translated by 谷歌翻译
无监督的域对点云语义分割的适应性引起了极大的关注,因为它在没有标记的数据中学习有效性。大多数现有方法都使用全局级特征对齐方式将知识从源域转移到目标域,这可能会导致特征空间的语义歧义。在本文中,我们提出了一个基于图形的框架,以探索两个域之间的局部特征对齐,可以在适应过程中保留语义歧视。具体而言,为了提取本地级特征,我们首先在两个域上动态构建本地特征图,并使用来自源域的图形构建存储库。特别是,我们使用最佳传输来生成图形匹配对。然后,基于分配矩阵,我们可以将两个域之间的特征分布与基于图的本地特征损失对齐。此外,我们考虑了不同类别的特征之间的相关性,并制定了类别引导的对比损失,以指导分割模型以学习目标域上的区分特征。对不同的合成到现实和真实域的适应情景进行了广泛的实验表明,我们的方法可以实现最先进的性能。
translated by 谷歌翻译
LiDAR-based 3D object detection is an indispensable task in advanced autonomous driving systems. Though impressive detection results have been achieved by superior 3D detectors, they suffer from significant performance degeneration when facing unseen domains, such as different LiDAR configurations, different cities, and weather conditions. The mainstream approaches tend to solve these challenges by leveraging unsupervised domain adaptation (UDA) techniques. However, these UDA solutions just yield unsatisfactory 3D detection results when there is a severe domain shift, e.g., from Waymo (64-beam) to nuScenes (32-beam). To address this, we present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D), where only a few labeled target data is available, yet can significantly improve the adaptation performance. In particular, our SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage. In the first stage, an Inter-domain Point-CutMix module is presented to efficiently align the point cloud distribution across domains. The Point-CutMix generates mixed samples of an intermediate domain, thus encouraging to learn domain-invariant knowledge. Then, in the second stage, we further enhance the model for better generalization on the unlabeled target set. This is achieved by exploring Intra-domain Point-MixUp in semi-supervised learning, which essentially regularizes the pseudo label distribution. Experiments from Waymo to nuScenes show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100% target label. Our code is available at https://github.com/yinjunbo/SSDA3D.
translated by 谷歌翻译
In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.
translated by 谷歌翻译
Segmentation of lidar data is a task that provides rich, point-wise information about the environment of robots or autonomous vehicles. Currently best performing neural networks for lidar segmentation are fine-tuned to specific datasets. Switching the lidar sensor without retraining on a big set of annotated data from the new sensor creates a domain shift, which causes the network performance to drop drastically. In this work we propose a new method for lidar domain adaption, in which we use annotated panoptic lidar datasets and recreate the recorded scenes in the structure of a different lidar sensor. We narrow the domain gap to the target data by recreating panoptic data from one domain in another and mixing the generated data with parts of (pseudo) labeled target domain data. Our method improves the nuScenes to SemanticKITTI unsupervised domain adaptation performance by 15.2 mean Intersection over Union points (mIoU) and by 48.3 mIoU in our semi-supervised approach. We demonstrate a similar improvement for the SemanticKITTI to nuScenes domain adaptation by 21.8 mIoU and 51.5 mIoU, respectively. We compare our method with two state of the art approaches for semantic lidar segmentation domain adaptation with a significant improvement for unsupervised and semi-supervised domain adaptation. Furthermore we successfully apply our proposed method to two entirely unlabeled datasets of two state of the art lidar sensors Velodyne Alpha Prime and InnovizTwo, and train well performing semantic segmentation networks for both.
translated by 谷歌翻译
最近3D点云学习一直是计算机视觉和自主驾驶中的热门话题。由于事实上,难以手动注释一个定性的大型3D点云数据集,无监督的域适应(UDA)在3D点云学习中流行,旨在将学习知识从标记的源域转移到未标记的目标领域。然而,具有简单学习模型引起的域转移引起的泛化和重建误差是不可避免的,这基本上阻碍了模型的学习良好表示的能力。为了解决这些问题,我们提出了一个结束到底自组合网络(SEN),用于3D云域适应任务。一般来说,我们的森林度假前的含义教师和半监督学习的优势,并引入了软的分类损失和一致性损失,旨在实现一致的泛化和准确的重建。在森中,学生网络以具有监督的学习和自我监督学习的协作方式,教师网络进行时间一致性,以学习有用的表示,并确保点云重建的质量。在几个3D点云UDA基准上的广泛实验表明,我们的SEN在分类和分段任务中表现出最先进的方法。此外,进一步的分析表明,我们的森也实现了更好的重建结果。
translated by 谷歌翻译
The network trained for domain adaptation is prone to bias toward the easy-to-transfer classes. Since the ground truth label on the target domain is unavailable during training, the bias problem leads to skewed predictions, forgetting to predict hard-to-transfer classes. To address this problem, we propose Cross-domain Moving Object Mixing (CMOM) that cuts several objects, including hard-to-transfer classes, in the source domain video clip and pastes them into the target domain video clip. Unlike image-level domain adaptation, the temporal context should be maintained to mix moving objects in two different videos. Therefore, we design CMOM to mix with consecutive video frames, so that unrealistic movements are not occurring. We additionally propose Feature Alignment with Temporal Context (FATC) to enhance target domain feature discriminability. FATC exploits the robust source domain features, which are trained with ground truth labels, to learn discriminative target domain features in an unsupervised manner by filtering unreliable predictions with temporal consensus. We demonstrate the effectiveness of the proposed approaches through extensive experiments. In particular, our model reaches mIoU of 53.81% on VIPER to Cityscapes-Seq benchmark and mIoU of 56.31% on SYNTHIA-Seq to Cityscapes-Seq benchmark, surpassing the state-of-the-art methods by large margins.
translated by 谷歌翻译
对象点云的语义分析在很大程度上是由释放基准数据集的驱动的,包括合成的数据集,其实例是从对象CAD模型中采样的。但是,从合成数据中学习可能不会推广到实际情况,在这种情况下,点云通常不完整,不均匀分布和嘈杂。可以通过学习域适应算法来减轻模拟对真实性(SIM2REAL)域间隙的挑战。但是,我们认为通过更现实的渲染来产生合成点云是一种强大的选择,因为可以捕获系统的非均匀噪声模式。为此,我们提出了一个集成方案,该方案包括通过将斑点模式的投影渲染到CAD模型上,以及一种新颖的准平衡自我训练,通过散布驱动驱动的选择,通过将斑点模式投影到CAD模型上,并通过将斑点模式投影和一种新颖的准平衡自我训练来渲染立体声图像,该方案包括对象点云的物理现实综合。长尾巴的伪标记为样品。实验结果可以验证我们方法的有效性及其两个模块,用于对点云分类的无监督域适应,从而实现最新的性能。源代码和SpeckLenet合成数据集可在https://github.com/gorilla-lab-scut/qs3上找到。
translated by 谷歌翻译
弱监督的点云语义分割方法需要1 \%或更少的标签,希望实现与完全监督的方法几乎相同的性能,这些方法最近引起了广泛的研究关注。该框架中的一个典型解决方案是使用自我训练或伪标记来从点云本身挖掘监督,但忽略了图像中的关键信息。实际上,在激光雷达场景中广泛存在相机,而这种互补信息对于3D应用似乎非常重要。在本文中,我们提出了一种用于3D分割的新型交叉模式弱监督的方法,并结合了来自未标记图像的互补信息。基本上,我们设计了一个配备有效标签策略的双分支网络,以最大程度地发挥标签的力量,并直接实现2D到3D知识转移。之后,我们以期望最大(EM)的视角建立了一个跨模式的自我训练框架,该框架在伪标签估计和更新参数之间进行了迭代。在M-Step中,我们提出了一个跨模式关联学习,通过增强3D点和2D超级像素之间的周期矛盾性,从图像中挖掘互补的监督。在E-Step中,伪标签的自我校准机制被得出过滤噪声标签,从而为网络提供了更准确的标签,以进行全面训练。广泛的实验结果表明,我们的方法甚至优于最先进的竞争对手,而少于1 \%的主动选择注释。
translated by 谷歌翻译
Unsupervised source-free domain adaptation methods aim to train a model to be used in the target domain utilizing the pretrained source-domain model and unlabeled target-domain data, where the source data may not be accessible due to intellectual property or privacy issues. These methods frequently utilize self-training with pseudo-labeling thresholded by prediction confidence. In a source-free scenario, only supervision comes from target data, and thresholding limits the contribution of the self-training. In this study, we utilize self-training with a mean-teacher approach. The student network is trained with all predictions of the teacher network. Instead of thresholding the predictions, the gradients calculated from the pseudo-labels are weighted based on the reliability of the teacher's predictions. We propose a novel method that uses proxy-based metric learning to estimate reliability. We train a metric network on the encoder features of the teacher network. Since the teacher is updated with the moving average, the encoder feature space is slowly changing. Therefore, the metric network can be updated in training time, which enables end-to-end training. We also propose a metric-based online ClassMix method to augment the input of the student network where the patches to be mixed are decided based on the metric reliability. We evaluated our method in synthetic-to-real and cross-city scenarios. The benchmarks show that our method significantly outperforms the existing state-of-the-art methods.
translated by 谷歌翻译
我们呈现Mix3D,一种用于分割大规模3D场景的数据增强技术。由于场景上下文有助于推理对象语义,因此当前的工作侧重于具有大容量和接收字段的模型,可以完全捕获输入3D场景的全局上下文。然而,强烈的背景前瞻可能会有不利的影响,就像错过了一个穿过街道的行人。在这项工作中,我们专注于平衡全球场景和局部几何形状的重要性,以概括在培训集中的上下文前方之外的目标。特别是,我们提出了一种“混合”技术,通过组合两个增强的场景来创造新的训练样本。通过这样做,对象实例被隐式地放入新颖的外观环境中,因此模型更难地依赖场景上下文,而是从本地结构推断出语义。我们进行详细的分析以了解全球背景,局部结构,局部结构和混合场景效果的重要性。在实验中,我们展示了Mix3D培训的模型从室内(Scannet,S3DIS)和室外数据集(Semantickitti)上的显着性能提升。 Mix3D可以逐渐与任何现有方法一起使用,例如,用Mix3D培训,MinkowsWinet在SCANNet测试基准78.1 Miou的显着边际占据了所有现有最先进的方法。代码可用:https://nekrasov.dev/mix3d/
translated by 谷歌翻译
密集的注释LiDAR点云是昂贵的,这限制了完全监督学习方法的可伸缩性。在这项工作中,我们研究了激光雷达分割中未充满激光的半监督学习(SSL)。我们的核心思想是利用激光点云的强烈空间提示来更好地利用未标记的数据。我们建议Lasermix混合不同激光扫描的激光束,然后鼓励模型在混合前后进行一致和自信的预测。我们的框架具有三个吸引人的属性:1)通用:Lasermix对LIDAR表示不可知(例如,范围视图和体素),因此可以普遍应用我们的SSL框架。 2)从统计上讲:我们提供详细的分析,以理论上解释所提出的框架的适用性。 3)有效:对流行激光雷达分割数据集(Nuscenes,Semantickitti和Scribblekitti)的全面实验分析证明了我们的有效性和优势。值得注意的是,我们在标签少2倍至5倍的同行中获得了竞争成果,并平均将仅监督的基线提高了10.8%。我们希望这个简洁而高性能的框架可以促进半监督的激光雷达细分的未来研究。代码将公开可用。
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使标记的源域的模型适应未标记的目标域。现有的基于UDA的语义细分方法始终降低像素级别,功能级别和输出级别的域移动。但是,几乎所有这些都在很大程度上忽略了上下文依赖性,该依赖性通常在不同的领域共享,从而导致较不怀疑的绩效。在本文中,我们提出了一个新颖的环境感知混音(camix)框架自适应语义分割的框架,该框架以完全端到端的可训练方式利用了上下文依赖性的这一重要线索作为显式的先验知识,以增强对适应性的适应性目标域。首先,我们通过利用积累的空间分布和先前的上下文关系来提出上下文掩盖的生成策略。生成的上下文掩码在这项工作中至关重要,并将指导三个不同级别的上下文感知域混合。此外,提供了背景知识,我们引入了重要的一致性损失,以惩罚混合学生预测与混合教师预测之间的不一致,从而减轻了适应性的负面转移,例如早期绩效降级。广泛的实验和分析证明了我们方法对广泛使用的UDA基准的最新方法的有效性。
translated by 谷歌翻译