近年来见证了基于地点的社交网络(LBSN)服务的日益普及,这为构建个性化的兴趣点(POI)推荐系统提供了无与伦比的机会。现有的POI推荐和位置预测任务利用过去的信息来从单个方向角度使用过去的推荐或预测,而缺少的POI类别识别任务需要在缺少类别之前和之后使用检查信息。因此,长期存在的挑战是如何在移动用户的现实检查数据中有效地识别丢失的POI类别。为此,在本文中,我们提出了一种新的神经网络方法,通过整合双向全球非个人转换模式和用户的个人喜好来识别缺失的POI类别。具体而言,我们精致地设计了一个关注匹配的单元格,以模拟登记类别信息如何与他们的非个人转换模式和个人偏好匹配。最后,我们在两个现实世界数据集中评估我们的模型,与最先进的基线相比,这明确验证了其有效性。此外,我们的模型可以自然扩展,以解决具有竞争性能的下一个POI类别推荐和预测任务。
translated by 谷歌翻译
人类移动性数据从兴趣点累积(POI)Chee-Ins为用户行为理解提供了很大的机会。然而,实际移动数据中的数据质量问题(例如,地理位置信息丢失,虚幻的检查,数据稀疏)限制了现有的POI导向研究的有效性,例如POI推荐和位置预测,当应用于真实应用时。为此,在本文中,我们开发了一个名为BI-STDDP的模型,可以集成双向时空依赖和用户的动态偏好,以识别用户已经访问的缺失的POI登记入住,其中时间。具体地,我们首先利用POI的双向全局空间和局部时间信息来捕获复杂的依赖关系。然后,将与用户和POI信息组合的目标时间模式被馈送到多层网络中以捕获用户的动态偏好。此外,动态偏好被转换为与依赖关系相同的空间以形成最终模型。最后,在三个大规模的现实世界数据集中评估所提出的模型,结果表明,与最先进的方法相比,我们模型的显着改进。此外,值得注意的是,所提出的模型可以自然地扩展,以解决具有竞争性表现的POI推荐和位置预测任务。
translated by 谷歌翻译
目前,下一个位置推荐在基于位置的社交网络应用程序和服务中起着重要作用。虽然已经提出了许多方法来解决这个问题,但到目前为止,三个重要挑战尚未得到很好的解决:(1)大多数现有方法基于经常性网络,这是耗费训练长期序列,因为不允许完整的平行度; (2)个性化偏好通常不被认为是合理的; (3)现有方法很少系统地研究了如何在轨迹数据中有效地利用各种辅助信息(例如,用户ID和时间戳)和非连续位置之间的时空关系。为了解决上述挑战,我们提出了一种名为SANMOVE的新型方法,是一种自我关注网络的模型,通过捕获用户的长期和短期移动模式来预测下一个位置。具体而言,SANMOVE引入了一个长期偏好学习模块,它使用自我关注模块来捕获用户的长期移动模式,可以代表用户的个性化位置偏好。同时,SanMove使用空间延伸的非侵入自我关注(Stnova)来利用辅助信息来学习短期偏好。我们使用两个真实世界数据集进行评估SANMOVE,并演示SANMOVE不仅比基于最先进的RNN的预测模型更快,而且还优于下一个位置预测的基线。
translated by 谷歌翻译
用户POI矩阵的稀疏性是下一个POI推荐的一个确定的问题,它阻碍了对用户偏好的有效学习。为了关注问题的更详细的扩展,我们为下一个新的($ n^2 $)POI推荐任务提出了联合三胞胎损失学习(JTLL)模块,这更具挑战性。我们的JTLL模块首先从用户的历史POI访问序列中计算出其他培训样本,然后,提出了设计的三重态损耗功能,以根据其各自的关系减少POI和用户嵌入的距离。接下来,JTLL模块将与最近的方法共同培训,以学习推荐任务的未访问关系。在两个已知的实际LBSN数据集上进行的实验表明,我们的联合培训模块能够改善最近现有作品的性能。
translated by 谷歌翻译
Accurate activity location prediction is a crucial component of many mobility applications and is particularly required to develop personalized, sustainable transportation systems. Despite the widespread adoption of deep learning models, next location prediction models lack a comprehensive discussion and integration of mobility-related spatio-temporal contexts. Here, we utilize a multi-head self-attentional (MHSA) neural network that learns location transition patterns from historical location visits, their visit time and activity duration, as well as their surrounding land use functions, to infer an individual's next location. Specifically, we adopt point-of-interest data and latent Dirichlet allocation for representing locations' land use contexts at multiple spatial scales, generate embedding vectors of the spatio-temporal features, and learn to predict the next location with an MHSA network. Through experiments on two large-scale GNSS tracking datasets, we demonstrate that the proposed model outperforms other state-of-the-art prediction models, and reveal the contribution of various spatio-temporal contexts to the model's performance. Moreover, we find that the model trained on population data achieves higher prediction performance with fewer parameters than individual-level models due to learning from collective movement patterns. We also reveal mobility conducted in the recent past and one week before has the largest influence on the current prediction, showing that learning from a subset of the historical mobility is sufficient to obtain an accurate location prediction result. We believe that the proposed model is vital for context-aware mobility prediction. The gained insights will help to understand location prediction models and promote their implementation for mobility applications.
translated by 谷歌翻译
推荐系统(RSS)旨在模拟和预测用户偏好,同时与诸如兴趣点(POI)的项目进行交互。这些系统面临着几种挑战,例如数据稀疏性,限制了它们的有效性。在本文中,我们通过将社会,地理和时间信息纳入矩阵分解(MF)技术来解决这个问题。为此,我们基于两个因素模拟社会影响:用户之间的相似之处在常见的办理登机手续和它们之间的友谊方面。我们根据明确的友谊网络和用户之间的高支票重叠介绍了两个友谊。我们基于用户的地理活动中心友好算法。结果表明,我们所提出的模型在两个真实的数据集中优于最先进的。更具体地说,我们的消融研究表明,社会模式在精确的@ 10分别在Gowalla和Yelp数据集中提高了我们所提出的POI推荐系统的表现。
translated by 谷歌翻译
下一个利益点(POI)的建议已成为基于位置的社交网络(LBSN)中必不可少的功能,因为它在帮助人们决定下一个POI访问方面有效。但是,准确的建议需要大量的历史检查数据,因此威胁用户隐私,因为云服务器需要处理位置敏感的数据。尽管有几个用于保护隐私的POI建议的设备框架,但在存储和计算方面,它们仍然是资源密集的,并且对用户POI交互的高稀疏性表现出有限的鲁棒性。在此基础上,我们为POI推荐(DCLR)提出了一个新颖的分散协作学习框架,该框架允许用户以协作方式在本地培训其个性化模型。 DCLR大大降低了本地模型对云的依赖性训练,并可用于扩展任意的集中建议模型。为了抵消在学习每个本地模型时在设备用户数据的稀疏性,我们设计了两个自学信号,以通过POI的地理和分类相关性在服务器上预处理POI表示。为了促进协作学习,我们创新建议将来自地理或语义上类似用户的知识纳入每个本地模型,并以细心的聚合和相互信息最大化。协作学习过程可利用设备之间的通信,同时仅需要中央服务器的少量参与来识别用户组,并且与诸如差异隐私之类的常见隐私保护机制兼容。我们使用两个现实世界数据集评估了DCLR,结果表明,与集中式同行相比,DCLR的表现优于最先进的设备框架,并产生竞争结果。
translated by 谷歌翻译
对人类流动性进行建模有助于了解人们如何访问资源并在城市中彼此进行身体接触,从而有助于各种应用,例如城市规划,流行病控制和基于位置的广告。下一个位置预测是单个人类移动性建模中的一项决定性任务,通常被视为序列建模,用Markov或基于RNN的方法解决。但是,现有模型几乎不关注单个旅行决策的逻辑和人口集体行为的可重复性。为此,我们提出了一个因果关系和空间约束的长期和短期学习者(CSLSL),以进行下一个位置预测。 CSLSL利用基于多任务学习的因果结构来明确对“ $ \ rightarrow $ wher wher wher wher whit $ \ rightarrow $ where where where”,a.k.a.”接下来,我们提出一个空间约束损失函数作为辅助任务,以确保旅行者目的地的预测和实际空间分布之间的一致性。此外,CSLSL采用了名为Long and Short-Charturer(LSC)的模块,以了解不同时间跨度的过渡规律。在三个现实世界数据集上进行的广泛实验表明,CSLSL的性能改善了基准,并确认引入因果关系和一致性约束的有效性。该实现可在https://github.com/urbanmobility/cslsl上获得。
translated by 谷歌翻译
当前的利益点方法(POI)建议通过标准空间特征(例如POI坐标,社交网络等)来了解用户的偏好。这些模型忽略了空间移动性的关键方面 - 每个用户都承载他们的偏好无论他们走到哪里,智能手机。此外,随着隐私问题的越来越多,用户避免分享其确切的地理坐标及其社交媒体活动。在本文中,我们提出了Revamp,这是一种顺序POI推荐方法,该方法利用智能手机应用程序(或应用程序)上的用户活动来识别其移动性偏好。这项工作与最近对在线城市用户的心理学研究保持一致,这表明其空间行动行为在很大程度上受其智能手机应用程序的活动影响。此外,我们对粗粒智能手机数据的建议是指以隐私意识的方式收集的数据日志,即仅由(a)类别的智能手机应用程序和(b)类别的签到位置组成。因此,改装并不愿意精确地坐标,社交网络或要访问的特定应用程序。在自我注意模型的疗效的推动下,我们使用两种形式的位置编码(绝对和相对)学习了用户的POI偏好,每种位置编码是从A的签入动力学中提取的,在A的入住序列中提取用户。来自中国的两个大规模数据集进行的广泛实验表明,改革的预测能力及其预测应用程序和POI类别的能力。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
下一篮子推荐考虑将一组项目推荐到用户将作为一个整体购买的下一个篮子。在本文中,我们为下一个篮子推荐开发了一种具有偏好,普及和转换(M2)的新颖混合模型。该方法在下一个篮子生成过程中模拟了三个重要因素:1)用户在项目中的“全球偏好”,2)项目的“全球受欢迎者和3”的过渡模式。与现有的基于内部网络的方法不同,M2不使用复杂的网络来模拟项目之间的转换,或为用户生成嵌入品。相反,它具有基于简单的编码器解码器的方法(ED-Trans),以更好地模拟项目之间的转换模式。我们将M2与不同组合的组合进行了比较,其中有5个现有的下一篮子推荐方法在4个公共基准数据集上推荐第一个,第二和第三篮子。我们的实验结果表明,M2显着优于所有任务中所有数据集的最先进的方法,提高了高达22.1%。此外,我们的消融研究表明,在推荐性能方面,ED-Trans比经常性神经网络更有效。我们还对下一个篮子推荐评估进行了彻底讨论了各种实验协议和评估指标。
translated by 谷歌翻译
随着移动通信技术的快速发展,人类的移动轨迹由互联网服务提供商(ISP)和应用服务提供商(ASP)大规模收集。另一方面,知识图(kg)的上升范式为我们提供了一个有希望的解决方案,可以从大规模轨迹数据提取结构化的“知识”。在本文中,我们基于知识图技术专注于建模用户的时空移动模式,并根据从多个源以凝聚力的方式提取的“知识”,预测用户的未来运动。具体来说,我们提出了一种新型知识图中,即时空城市知识图(STKG),其中活动轨迹,场地的类别信息和时间信息都是由STKG中不同关系类型的事实共同建模。移动预测问题转换为知识图表在STKG中完成问题。此外,提出了一种具有精心设计的评分功能的复杂嵌入模型,以衡量STKG中的事实的合理性,以解决知识图形完成问题,这考虑了移动性模式的时间动态,并利用POI类别作为辅助信息和背景知识。广泛的评估确认我们模型在预测用户方面的高精度与最先进的算法相比,S'Mobility,即,提高了5.04%的准确性。此外,POI类别作为背景知识和辅助信息被证实通过在准确性方面提高了3.85%的性能,有助于提高。另外,实验表明,与现有方法相比,我们的所提出的方法通过将计算时间降低43.12%以上。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探索了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)研究的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新颖的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在三个阶段逐渐推荐中实现了一次弹奏随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性推荐模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准和领先的算法复杂的NAS方法,具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。
translated by 谷歌翻译
Session-Based Recommenders (SBRs) aim to predict users' next preferences regard to their previous interactions in sessions while there is no historical information about them. Modern SBRs utilize deep neural networks to map users' current interest(s) during an ongoing session to a latent space so that their next preference can be predicted. Although state-of-art SBR models achieve satisfactory results, most focus on studying the sequence of events inside sessions while ignoring temporal details of those events. In this paper, we examine the potential of session temporal information in enhancing the performance of SBRs, conceivably by reflecting the momentary interests of anonymous users or their mindset shifts during sessions. We propose the STAR framework, which utilizes the time intervals between events within sessions to construct more informative representations for items and sessions. Our mechanism revises session representation by embedding time intervals without employing discretization. Empirical results on Yoochoose and Diginetica datasets show that the suggested method outperforms the state-of-the-art baseline models in Recall and MRR criteria.
translated by 谷歌翻译
顺序推荐是推荐系统的广泛流行的主题。现有的作品有助于提高基于各种方法的顺序推荐系统的预测能力,例如经常性网络和自我关注机制。然而,他们未能发现和区分项目之间的各种关系,这可能是激励用户行为的潜在因素。在本文中,我们提出了一个边缘增强的全面解散图神经网络(EGD-GNN)模型,以捕获全局项目表示和本地用户意图学习项目之间的关系信息。在全球级别,我们通过所有序列构建全局链接图来模拟项目关系。然后,频道感知的解缠绕学习层被设计成将边缘信息分解为不同的信道,这可以聚合以将目标项从其邻居表示。在本地层面,我们应用一个变化的自动编码器框架来学习用户在当前序列上的意图。我们在三个现实世界数据集中评估我们提出的方法。实验结果表明,我们的模型可以通过最先进的基线获得至关重要的改进,能够区分项目特征。
translated by 谷歌翻译
接触犯罪和暴力会损害个人的生活质量和社区的经济增长。鉴于机器学习的迅速发展,需要探索自动解决方案以防止犯罪。随着细粒度的城市和公共服务数据的可用性越来越多,最近融合了这种跨域信息以促进犯罪预测的激增。通过捕获有关社会结构,环境和犯罪趋势的信息,现有的机器学习预测模型从不同观点探索了动态犯罪模式。但是,这些方法主要将这种多源知识转换为隐性和潜在表示(例如,学区的嵌入),这仍然是研究显式因素对幕后犯罪发生的影响的影响仍然是一个挑战。在本文中,我们提出了一个时空的元数据指导性犯罪预测(STMEC)框架,以捕获犯罪行为的动态模式,并明确地表征了环境和社会因素如何相互互动以产生预测。广泛的实验表明,与其他先进的时空模型相比,STMEC的优越性,尤其是在预测重罪(例如使用危险武器的抢劫和袭击)时。
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
给定一系列集合,其中每个集合与时间戳关联并包含任意数量的元素,时间集的任务预测旨在预测后续集合中的元素。先前对时间集预测的研究主要通过从自己的序列中学习来捕获每个用户的进化偏好。尽管有见地,但我们认为:1)不同用户序列中潜在的协作信号是必不可少的,但尚未被利用; 2)用户还倾向于显示固定的偏好,而现有方法未能考虑。为此,我们提出了一个集成的学习框架,以对时间集预测的用户的进化和固定偏好进行建模,该预测首先通过按时间顺序排列所有用户群的交互来构建通用序列,然后在每个用户集中学习相互作用。特别是,对于每个用户集的交互,我们首先设计一个进化用户偏好建模组件,以跟踪用户的时间不断发展的偏好,并在不同用户之间利用潜在的协作信号。该组件维护一个存储库来存储相关用户和元素的记忆,并根据当前编码的消息和过去的记忆不断更新其记忆。然后,我们设计了一个固定的用户偏好模型模块,以根据历史序列来发现每个用户的个性化特征,该模块从双重角度自适应地汇总了以前相互作用的元素,并在用户和元素的嵌入方式的指导下。最后,我们开发了一种设定批次算法来提高模型效率,该算法可以提前创建时间一致的批次,并平均实现3.5倍的训练速度。现实世界数据集的实验证明了我们方法的有效性和良好的解释性。
translated by 谷歌翻译
对用户偏好的演变进行建模对于推荐系统至关重要。最近,已经研究并实现了基于图形的动态方法以供推荐使用,其中大多数侧重于用户稳定的长期偏好。但是,在实际情况下,用户的短期偏好会随着时间的流逝而动态发展。尽管存在试图捕获它的顺序方法,但是如何使用基于动态图的方法对短期偏好的演变进行建模尚未得到很好的认可。特别是:1)现有方法不会像顺序方法一样明确编码和捕获短期偏好的演变; 2)简单地使用最后几个交互不足以建模变化的趋势。在本文中,我们提出了连续时间顺序推荐(LSTSR)的长期短期偏好模型(LSTSR),以捕获动态图下短期偏好的演变。具体而言,我们明确编码短期优先偏好并通过内存机制进行优化,该内存机制具有三个关键操作:消息,汇总和更新。我们的内存机制不仅可以存储单跳信息,而且还可以通过在线新的交互触发。在五个公共数据集上进行的广泛实验表明,LSTSR始终优于各种线路上许多最先进的建议方法。
translated by 谷歌翻译