可解释的人工智能(XAI)迅速增长的研究领域解决的一个中心问题是提供方法来解释培训后机器学习(ML)非解剖模型的行为。最近,越来越明显的是,创建更好的解释的新方向应考虑到对人类用户的好解释。本文建议利用开发一个XAI框架,该框架允许根据潜在不同的中级输入功能来为图像的响应产生多个解释。为此,我们提出了一个XAI框架,能够根据自动编码器提取的输入功能来构建说明。我们从以下假设开始:某些自动编码器依赖标准数据表示方法可以提取更明显和可理解的输入属性,我们在此处称其为\ textit {中级输入功能}(MLFS),对于原始低点而言 - 级别的功能。此外,可以通过不同类型的自动编码器提取不同类型的MLF,可以返回对同一ML系统行为的不同类型的解释。我们在两个不同的图像数据集上测试了我们的方法,并使用了三种不同类型的MLF。结果令人鼓舞。尽管我们的新方法在图像分类的背景下进行了测试,但可以在其他数据类型上使用自动编码器来提取人类易于理解的表示形式。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
尽管深度神经网络(DNNS)具有很大的概括和预测能力,但它们的功能不允许对其行为进行详细的解释。不透明的深度学习模型越来越多地用于在关键环境中做出重要的预测,而危险在于,它们做出和使用不能合理或合法化的预测。已经出现了几种可解释的人工智能(XAI)方法,这些方法与机器学习模型分开了,但对模型的实际功能和鲁棒性具有忠诚的缺点。结果,就具有解释能力的深度学习模型的重要性达成了广泛的协议,因此他们自己可以为为什么做出特定的预测提供答案。首先,我们通过形式化解释是什么是缺乏XAI的普遍标准的问题。我们还引入了一组公理和定义,以从数学角度阐明XAI。最后,我们提出了Greybox XAI,该框架由于使用了符号知识库(KB)而构成DNN和透明模型。我们从数据集中提取KB,并使用它来训练透明模型(即逻辑回归)。在RGB图像上训练了编码器 - 编码器架构,以产生类似于透明模型使用的KB的输出。一旦两个模型被独立训练,它们就会在组合上使用以形成可解释的预测模型。我们展示了这种新体系结构在几个数据集中如何准确且可解释的。
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
An interesting case of the well-known Dataset Shift Problem is the classification of Electroencephalogram (EEG) signals in the context of Brain-Computer Interface (BCI). The non-stationarity of EEG signals can lead to poor generalisation performance in BCI classification systems used in different sessions, also from the same subject. In this paper, we start from the hypothesis that the Dataset Shift problem can be alleviated by exploiting suitable eXplainable Artificial Intelligence (XAI) methods to locate and transform the relevant characteristics of the input for the goal of classification. In particular, we focus on an experimental analysis of explanations produced by several XAI methods on an ML system trained on a typical EEG dataset for emotion recognition. Results show that many relevant components found by XAI methods are shared across the sessions and can be used to build a system able to generalise better. However, relevant components of the input signal also appear to be highly dependent on the input itself.
translated by 谷歌翻译
Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
translated by 谷歌翻译
卷积神经网络(CNN)以其出色的功能提取能力而闻名,可以从数据中学习模型,但被用作黑匣子。对卷积滤液和相关特征的解释可以帮助建立对CNN的理解,以区分各种类别。在这项工作中,我们关注的是CNN模型的解释性,称为CNNexplain,该模型用于COVID-19和非CoVID-19分类,重点是卷积过滤器的特征解释性,以及这些功能如何有助于分类。具体而言,我们使用了各种可解释的人工智能(XAI)方法,例如可视化,SmoothGrad,Grad-Cam和Lime来提供卷积滤液的解释及相关特征及其在分类中的作用。我们已经分析了使用干咳嗽光谱图的这些方法的解释。从石灰,光滑果实和GRAD-CAM获得的解释结果突出了不同频谱图的重要特征及其与分类的相关性。
translated by 谷歌翻译
最近的机器学习趋势一直是通过解释自己的预测的能力来丰富学习模式。到目前为止,迄今为止,可解释的AI(XAI)的新兴领域主要集中在监督学习,特别是深度神经网络分类器。然而,在许多实际问题中,未给出标签信息,并且目标是发现数据的基础结构,例如,其群集。虽然存在强大的方法来提取数据中的群集结构,但它们通常不会回答为什么已分配给给定群集的某些数据点的原因。我们提出了一种新的框架,它首次以有效可靠的方式在输入特征方面解释群集分配。它基于小说洞察力,即聚类模型可以被重写为神经网络 - 或“神经化”。然后,所获得的网络的集群预测可以快速准确地归因于输入特征。几个陈列室展示了我们的方法评估学习集群质量的能力,并从分析的数据和表示中提取新颖的见解。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
可解释的人工智能和可解释的机器学习是重要性越来越重要的研究领域。然而,潜在的概念仍然难以捉摸,并且缺乏普遍商定的定义。虽然社会科学最近的灵感已经重新分为人类受助人的需求和期望的工作,但该领域仍然错过了具体的概念化。通过审查人类解释性的哲学和社会基础,我们采取措施来解决这一挑战,然后我们转化为技术领域。特别是,我们仔细审查了算法黑匣子的概念,并通过解释过程确定的理解频谱并扩展了背景知识。这种方法允许我们将可解释性(逻辑)推理定义为在某些背景知识下解释的透明洞察(进入黑匣子)的解释 - 这是一个从事在Admoleis中理解的过程。然后,我们采用这种概念化来重新审视透明度和预测权力之间的争议权差异,以及对安特 - 人穴和后宫后解释者的影响,以及可解释性发挥的公平和问责制。我们还讨论机器学习工作流程的组件,可能需要可解释性,从以人为本的可解释性建立一系列思想,重点介绍声明,对比陈述和解释过程。我们的讨论调整并补充目前的研究,以帮助更好地导航开放问题 - 而不是试图解决任何个人问题 - 从而为实现的地面讨论和解释的人工智能和可解释的机器学习的未来进展奠定了坚实的基础。我们结束了我们的研究结果,重新审视了实现所需的算法透明度水平所需的人以人为本的解释过程。
translated by 谷歌翻译
近年来,可解释的人工智能(XAI)已成为一个非常适合的框架,可以生成人类对“黑盒”模型的可理解解释。在本文中,一种新颖的XAI视觉解释算法称为相似性差异和唯一性(SIDU)方法,该方法可以有效地定位负责预测的整个对象区域。通过各种计算和人类主题实验分析了SIDU算法的鲁棒性和有效性。特别是,使用三种不同类型的评估(应用,人类和功能地面)评估SIDU算法以证明其出色的性能。在对“黑匣子”模型的对抗性攻击的情况下,进一步研究了Sidu的鲁棒性,以更好地了解其性能。我们的代码可在:https://github.com/satyamahesh84/sidu_xai_code上找到。
translated by 谷歌翻译
我们提出了CX-TOM,简短于与理论的理论,一种新的可解释的AI(XAI)框架,用于解释深度卷积神经网络(CNN)制定的决定。与生成解释的XAI中的当前方法形成对比,我们将说明作为迭代通信过程,即对话框,机器和人类用户之间。更具体地说,我们的CX-TOM框架通过调解机器和人类用户的思想之间的差异,在对话中生成解释顺序。为此,我们使用思想理论(汤姆),帮助我们明确地建模人类的意图,通过人类的推断,通过机器推断出人类的思想。此外,大多数最先进的XAI框架提供了基于注意的(或热图)的解释。在我们的工作中,我们表明,这些注意力的解释不足以增加人类信任在潜在的CNN模型中。在CX-TOM中,我们使用命名为您定义的故障行的反事实解释:给定CNN分类模型M预测C_PRED的CNN分类模型M的输入图像I,错误线识别最小的语义级别特征(例如,斑马上的条纹,狗的耳朵),称为可解释的概念,需要从I添加或删除,以便将m的分类类别改变为另一个指定的c_alt。我们认为,由于CX-TOM解释的迭代,概念和反事本质,我们的框架对于专家和非专家用户来说是实用的,更加自然,以了解复杂的深度学习模式的内部运作。广泛的定量和定性实验验证了我们的假设,展示了我们的CX-TOM显着优于最先进的可解释的AI模型。
translated by 谷歌翻译