An interesting case of the well-known Dataset Shift Problem is the classification of Electroencephalogram (EEG) signals in the context of Brain-Computer Interface (BCI). The non-stationarity of EEG signals can lead to poor generalisation performance in BCI classification systems used in different sessions, also from the same subject. In this paper, we start from the hypothesis that the Dataset Shift problem can be alleviated by exploiting suitable eXplainable Artificial Intelligence (XAI) methods to locate and transform the relevant characteristics of the input for the goal of classification. In particular, we focus on an experimental analysis of explanations produced by several XAI methods on an ML system trained on a typical EEG dataset for emotion recognition. Results show that many relevant components found by XAI methods are shared across the sessions and can be used to build a system able to generalise better. However, relevant components of the input signal also appear to be highly dependent on the input itself.
translated by 谷歌翻译
A systematic review on machine-learning strategies for improving generalizability (cross-subjects and cross-sessions) electroencephalography (EEG) based in emotion classification was realized. In this context, the non-stationarity of EEG signals is a critical issue and can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this issue, mainly based on transfer learning methods. 418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques for generalization in EEG-based emotion assessment. Among these papers, 75 were found eligible based on their relevance to the problem. Studies lacking a specific cross-subject and cross-session validation strategy and making use of other biosignals as support were excluded. On the basis of the selected papers' analysis, a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief discussion on the different ML approaches involved. The studies with the best results in terms of average classification accuracy were identified, supporting that transfer learning methods seem to perform better than other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii) psychological screening of the experimental sample on the classifier performances.
translated by 谷歌翻译
可解释的人工智能(XAI)迅速增长的研究领域解决的一个中心问题是提供方法来解释培训后机器学习(ML)非解剖模型的行为。最近,越来越明显的是,创建更好的解释的新方向应考虑到对人类用户的好解释。本文建议利用开发一个XAI框架,该框架允许根据潜在不同的中级输入功能来为图像的响应产生多个解释。为此,我们提出了一个XAI框架,能够根据自动编码器提取的输入功能来构建说明。我们从以下假设开始:某些自动编码器依赖标准数据表示方法可以提取更明显和可理解的输入属性,我们在此处称其为\ textit {中级输入功能}(MLFS),对于原始低点而言 - 级别的功能。此外,可以通过不同类型的自动编码器提取不同类型的MLF,可以返回对同一ML系统行为的不同类型的解释。我们在两个不同的图像数据集上测试了我们的方法,并使用了三种不同类型的MLF。结果令人鼓舞。尽管我们的新方法在图像分类的背景下进行了测试,但可以在其他数据类型上使用自动编码器来提取人类易于理解的表示形式。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
可说明的人工智能(XAI)的目前的模型显示出在提出统计上纠缠特征时,可以显而易见和量化缺乏可靠性,当提出统计上纠缠的特征时,为训练深层分类器。深度学习在临床试验中的应用增加了预测神经发育障碍的早期诊断,如自闭症谱系障碍(ASD)。然而,包含更可靠的显着图,以获得使用神经活动特征的更可靠和可解释的度量,对于诊断或临床试验中的实际应用仍然不充分。此外,在ASD研究中,包含使用神经措施来预测观察面部情绪的深层分类器相对未探索。因此,在本研究中,我们提出了对脑电图(EEG)的卷积神经网络(CNN)的评估,用于基于新颖的删除(咆哮)方法,以恢复分类器中使用的高度相关特征。具体而言,我们比较众所周知的相关性图,例如层性相关性传播(LRP),图案网络,图案归因和平滑级平方。本研究是第一个在通常开发的和ASD个体中使用内部训练的CNN内训练的基于EEG的面部情感识别来实现更透明的特征相关计算。
translated by 谷歌翻译
过去几十年来看,越来越多地采用的非侵入性神经影像学技术越来越大的进步,以检查人脑发展。然而,这些改进并不一定是更复杂的数据分析措施,能够解释功能性大脑发育的机制。例如,从单变量(大脑中的单个区域)转变为多变量(大脑中的多个区域)分析范式具有重要意义,因为它允许调查不同脑区之间的相互作用。然而,尽管对发育大脑区域之间的相互作用进行了多变量分析,但应用了人工智能(AI)技术,使分析不可解释。本文的目的是了解电流最先进的AI技术可以通知功能性大脑发展的程度。此外,还审查了哪种AI技术基于由发育认知神经科学(DCN)框架所定义的大脑发展的过程来解释他们的学习。这项工作还提出说明可解释的AI(Xai)可以提供可行的方法来调查功能性大脑发育,如DCN框架的假设。
translated by 谷歌翻译
交通事故是年轻人死亡的主要原因,这一问题今天占了大量受害者。已经提出了几种技术来预防事故,是脑部计算机界面(BCIS)最有前途的技术之一。在这种情况下,BCI被用来检测情绪状态,集中问题或压力很大的情况,这可能在道路上起着基本作用,因为它们与驾驶员的决定直接相关。但是,在驾驶场景中,没有广泛的文献应用BCI来检测受试者的情绪。在这种情况下,需要解决一些挑战,例如(i)执行驾驶任务对情绪检测的影响以及(ii)在驾驶场景中哪些情绪更可检测到的情绪。为了改善这些挑战,这项工作提出了一个框架,该框架着重于使用机器学习和深度学习算法的脑电图检测情绪。此外,已经设计了两个场景的用例。第一种情况是聆听声音作为要执行的主要任务,而在第二种情况下,聆听声音成为次要任务,这是使用驱动模拟器的主要任务。这样,它旨在证明BCI在这种驾驶方案中是否有用。结果改善了文献中现有的结果,可在发现两种情绪(非刺激性和愤怒)中达到99%的准确性,三种情绪(非刺激性,愤怒和中立)的93%,四种情绪(非刺激)(非 - 刺激,愤怒,中立和喜悦)。
translated by 谷歌翻译
除了机器学习(ML)模型的令人印象深刻的预测力外,最近还出现了解释方法,使得能够解释诸如深神经网络的复杂非线性学习模型。获得更好的理解尤其重要。对于安全 - 关键的ML应用或医学诊断等。虽然这种可解释的AI(XAI)技术对分类器达到了重大普及,但到目前为止对XAI的重点进行了很少的关注(Xair)。在这篇综述中,我们澄清了XAI对回归和分类任务的基本概念差异,为Xair建立了新的理论见解和分析,为Xair提供了真正的实际回归问题的示范,最后讨论了该领域仍然存在的挑战。
translated by 谷歌翻译
由于其出色的表现,深度学习框架在脑电脑界面(BCI)学习中越来越受欢迎。然而,在单独的分类模型方面,它们被视为黑匣子,因为它们没有提供有关LED它们达到特定决定的任何信息。换句话说,我们不能说服神经生理因素是否引起了高性能或简单的噪音。由于这个缺点,与他们的高性能相比,难以确保足够的可靠性。在这项研究中,我们向BCI提出了可解释的深度学习模式。具体地,我们的目标是对从电动机图像(MI)任务中获得的EEG信号进行分类。此外,我们采用了层次的相关性传播(LRP)到模型,以解释模型导出某些分类输出的原因。我们可视化热图,该热线图表明了地形形式的LRP输出,以证明神经生理因素。此外,我们通过避免主题依赖性来分类脑电图,以学习鲁棒和广义eEG特征。该方法还提供了避免为每个主题建立培训数据的牺牲的优势。通过我们所提出的模型,我们为所有受试者获得了广义的热爱图案。结果,我们可以得出结论,我们的拟议模型提供了神经生理学上可靠的解释。
translated by 谷歌翻译
通过脑电图信号的情绪分类取得了许多进步。但是,诸如缺乏数据和学习重要特征和模式之类的问题始终是具有在计算和预测准确性方面改进的领域。这项工作分析了基线机器学习分类器在DEAP数据集上的性能以及一种表格学习方法,该方法提供了最新的可比结果,从而利用了性能提升,这是由于其深度学习架构而无需部署重型神经网络。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
情感估计是一个积极的研究领域,对人与计算机之间的互动产生了重要影响。在评估情绪的不同方式中,代表电脑活动的脑电图(EEG)在过去十年中呈现了激励结果。 EEG的情感估计可以有助于某些疾病的诊断或康复。在本文中,我们提出了一种考虑到专家定义的生理学知识,与最初致力于计算机视觉的新型深度学习(DL)模型。具有模型显着性分析的联合学习得到了增强。为了呈现全局方法,该模型已经在四个公共可用数据集中进行了评估,并实现了与TheS-of TheakeS的方法和优于两个所提出的数据集的结果,其具有较低标准偏差的较高的稳定性。为获得再现性,本文提出的代码和模型可在Github.com/vdelv/emotion-eeg中获得。
translated by 谷歌翻译
在基于脑电图的情感计算领域,跨数据库情绪识别是一项极具挑战性的任务,受许多因素的影响,这使得通用模型产生了不令人满意的结果。面对缺乏脑电图信息解码研究的情况,我们首先分析了通过样本空间可视化,样本聚合现象量化和对五个公共数据集的能量模式分析的不同脑电图信息(个人,会话,情绪,试验)对情绪识别的影响。并基于这些现象和模式,我们提供了各种脑电图差异的处理方法和可解释的工作。通过分析情绪特征分布模式,发现了个体的情感特征分布差异(IEFDD)。在分析了IEFDD遭受的传统建模方法的局限性之后,我们提出了基于重量的通道模型矩阵框架(WCMF)。为了合理地表征情绪特征分布模式,设计了四种重量提取方法,最佳是校正t检验(CT)重量提取方法。最后,WCMF的性能在两种实验中在跨数据库任务上进行了验证,这些实验模拟了不同的实践场景,结果表明WCMF具有更稳定和更好的情感识别能力。
translated by 谷歌翻译
使用深神经网络算法分析振动数据是检测早期旋转机械损害的有效方法。但是,这些方法的黑框方法通常无法提供令人满意的解决方案,因为人类无法理解分类的原因。因此,这项工作调查了可解释的AI(XAI)算法在基于振动状态监测的卷积神经网络中的应用。为此,将各种XAI算法应用于基于傅立叶变换以及振动信号的顺序分析的分类。将结果可视化,是每分钟旋转(rpm)的函数,频率-RPM映射和订单RPM映射的形状。这允许评估取决于旋转速度和恒定频率的功能的显着性。为了比较XAI方法的解释能力,首先使用具有已知类别特异性特征的合成数据集进行了研究。然后,使用了针对电动机上基于振动的不平衡分类的现实世界数据集,该数据集以广泛的旋转速度运行。特别重点放在数据的可变周期性的一致性上,这转化为现实世界机器的不同旋转速度。这项工作旨在显示此用例的方法的不同优势和劣势:Gradcam,LRP和Lime具有新的扰动策略。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
随着深度神经网络的兴起,解释这些网络预测的挑战已经越来越识别。虽然存在许多用于解释深度神经网络的决策的方法,但目前没有关于如何评估它们的共识。另一方面,鲁棒性是深度学习研究的热门话题;但是,在最近,几乎没有谈论解释性。在本教程中,我们首先呈现基于梯度的可解释性方法。这些技术使用梯度信号来分配对输入特征的决定的负担。后来,我们讨论如何为其鲁棒性和对抗性的鲁棒性在具有有意义的解释中扮演的作用来评估基于梯度的方法。我们还讨论了基于梯度的方法的局限性。最后,我们提出了在选择解释性方法之前应检查的最佳实践和属性。我们结束了未来在稳健性和解释性融合的地区研究的研究。
translated by 谷歌翻译
Post-hoc analysis is a popular category in eXplainable artificial intelligence (XAI) study. In particular, methods that generate heatmaps have been used to explain the deep neural network (DNN), a black-box model. Heatmaps can be appealing due to the intuitive and visual ways to understand them but assessing their qualities might not be straightforward. Different ways to assess heatmaps' quality have their own merits and shortcomings. This paper introduces a synthetic dataset that can be generated adhoc along with the ground-truth heatmaps for more objective quantitative assessment. Each sample data is an image of a cell with easily recognized features that are distinguished from localization ground-truth mask, hence facilitating a more transparent assessment of different XAI methods. Comparison and recommendations are made, shortcomings are clarified along with suggestions for future research directions to handle the finer details of select post-hoc analysis methods. Furthermore, mabCAM is introduced as the heatmap generation method compatible with our ground-truth heatmaps. The framework is easily generalizable and uses only standard deep learning components.
translated by 谷歌翻译