城市规划师越来越多地使用基于深度学习的计算机视觉模型来支持塑造城市环境的决策。这样的模型预测人们如何从例如它的安全或美丽。但是,深度学习模型的黑盒本质阻碍了城市规划师,以了解哪些景观对象有助于特别高质量或低质量的城市空间感知。这项研究调查了如何使用计算机视觉模型来提取有关人们对城市空间的看法的相关政策信息。为此,我们训练了两个广泛使用的计算机视觉架构。卷积神经网络和变压器,并应用Gradcam(一种众所周知的可解释的AI技术),以突出图像区域对模型的预测很重要。使用这些GradCAM可视化,我们手动注释与模型的感知预测相关的对象。结果,我们能够发现以前研究中用于注释的当前对象检测模型中未表示的新对象。此外,我们的方法论结果表明,变压器架构更适合与GARGCAM技术结合使用。代码可在GitHub上找到。
translated by 谷歌翻译
The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译
目前,城市流动研究和政府举措主要集中在与电动机相关的问题上,例如,拥堵与污染问题。然而,我们不能忽视城市景观中最脆弱的元素:行人,暴露于比其他道路用户更高的风险。实际上,城市的安全,无障碍和可持续的运输系统是联合国2030年议程的核心目标。因此,有机会将先进的计算工具应用于交通安全的问题,特别是对过去常被忽视的行人。本文结合了公共数据来源,大型街道图像和计算机视觉技术,以自动化,相对简单和普遍适用的数据处理方案接近行人和车辆安全性。该流水线所涉及的步骤包括对残余卷积神经网络的适应和训练,以确定每个给定城市场景的危险指标,以及基于这些相同图像的图像分割和类激活映射的解释性分析。结合,这种计算方法的结果是一个城市危险水平的细粒度地图,以及识别可能同时改善行人和车辆安全的干预措施的启发式。拟议的框架应作为城市规划者和公共当局的工作补充。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
分析了2011年至2021年发表的88个来源,本文对基于计算机的建筑物和建筑环境进行了首次系统评价,以评估其对建筑和城市设计研究的价值。遵循多阶段的选择过程,讨论了有关建筑应用,例如建筑物分类,详细分类,定性环境分析,建筑条件调查和建筑价值估算等建筑应用程序的类型。这揭示了当前的研究差距和趋势,并突出了研究目标的两个主要类别。首先,要使用或优化计算机视觉方法进行体系结构图像数据,然后可以帮助自动化耗时,劳动密集型或复杂的视觉分析任务。其次,通过查找视觉,统计和定性数据之间的模式和关系来探索机器学习方法的方法论上的好处,以研究有关建筑环境的新问题,这可以克服传统手动分析的局限性。不断增长的研究为建筑和设计研究提供了新的方法,论文确定了未来的研究挑战和方向。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
在高风险领域中采用卷积神经网络(CNN)模型受到了他们无法满足社会对决策透明度的需求的阻碍。到目前为止,已经出现了越来越多的方法来开发可通过设计解释的CNN模型。但是,这样的模型无法根据人类的看法提供解释,同时保持有能力的绩效。在本文中,我们通过实例化固有可解释的CNN模型的新颖的一般框架来应对这些挑战,该模型名为E pluribus unum unum Change Chandn(EPU-CNN)。 EPU-CNN模型由CNN子网络组成,每个工程都会收到表达感知特征的输入图像的不同表示,例如颜色或纹理。 EPU-CNN模型的输出由分类预测及其解释组成,其基于输入图像不同区域的感知特征的相对贡献。 EPU-CNN模型已在各种可公开可用的数据集以及贡献的基准数据集上进行了广泛的评估。医学数据集用于证明EPU-CNN在医学中对风险敏感的决策的适用性。实验结果表明,与其他CNN体系结构相比,EPU-CNN模型可以实现可比或更好的分类性能,同时提供人类可感知的解释。
translated by 谷歌翻译
As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) are attracting considerable attention, and have tremendously helped Machine Learning (ML) engineers in understanding AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model's reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs' reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Secondly, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision (CV) and Natural Language Processing (NLP) domains.
translated by 谷歌翻译
已经提出了多种解释性方法和理论评价分数。然而,尚不清楚:(1)这些方法有多有用的现实情景和(2)理论措施如何预测人类实际使用方法的有用性。为了填补这一差距,我们在规模中进行了人类的心理物理学实验,以评估人类参与者(n = 1,150)以利用代表性归因方法学习预测不同图像分类器的决定的能力。我们的结果表明,用于得分的理论措施可解释方法的反映在现实世界方案中的个人归因方法的实际实用性不佳。此外,个人归因方法帮助人类参与者预测分类器的决策的程度在分类任务和数据集中广泛变化。总体而言,我们的结果突出了该领域的根本挑战 - 建议致力于开发更好的解释方法和部署人以人为本的评估方法。我们将制定框架的代码可用于缓解新颖解释性方法的系统评估。
translated by 谷歌翻译
尽管深度神经网络(DNNS)具有很大的概括和预测能力,但它们的功能不允许对其行为进行详细的解释。不透明的深度学习模型越来越多地用于在关键环境中做出重要的预测,而危险在于,它们做出和使用不能合理或合法化的预测。已经出现了几种可解释的人工智能(XAI)方法,这些方法与机器学习模型分开了,但对模型的实际功能和鲁棒性具有忠诚的缺点。结果,就具有解释能力的深度学习模型的重要性达成了广泛的协议,因此他们自己可以为为什么做出特定的预测提供答案。首先,我们通过形式化解释是什么是缺乏XAI的普遍标准的问题。我们还引入了一组公理和定义,以从数学角度阐明XAI。最后,我们提出了Greybox XAI,该框架由于使用了符号知识库(KB)而构成DNN和透明模型。我们从数据集中提取KB,并使用它来训练透明模型(即逻辑回归)。在RGB图像上训练了编码器 - 编码器架构,以产生类似于透明模型使用的KB的输出。一旦两个模型被独立训练,它们就会在组合上使用以形成可解释的预测模型。我们展示了这种新体系结构在几个数据集中如何准确且可解释的。
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
机器学习算法可以在当代智能系统中进行高级决策。研究表明,它们的模型性能与解释性之间存在权衡。具有较高性能的机器学习模型通常基于更复杂的算法,因此缺乏解释性,反之亦然。但是,从最终用户的角度来看,这种权衡几乎没有经验证据。我们旨在通过进行两个用户实验来提供经验证据。使用两个不同的数据集,我们首先测量五种常见的机器学习算法的权衡。其次,我们解决了最终用户对可解释的人工智能增强的看法的问题,旨在增加对高性能复杂模型的决策逻辑的理解。我们的结果与权衡曲线的广泛假设有所不同,并表明模型性能和解释性之间的权衡在最终用户的感知中逐渐少得多。这与假定的固有模型可解释性形成鲜明对比。此外,我们发现折衷是由于数据复杂性而成为情境。我们的第二次实验的结果表明,尽管可以使用可解释的人工智能增强来提高解释性,但解释的类型在最终用户感知中起着至关重要的作用。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
由于机器学习越来越多地应用于高冲击,高风险域,因此有许多新方法旨在使AI模型更具人类解释。尽管最近的可解释性工作增长,但缺乏对所提出的技术的系统评价。在这项工作中,我们提出了一种新的人类评估框架蜂巢(可视化解释的人类可解释性),用于计算机愿景中的不同解释性方法;据我们所知,这是它的第一个工作。我们认为,人类研究应该是正确评估方法对人类用户的可解释方式的金标。虽然由于与成本,研究设计和跨方法比较相关的挑战,我们常常避免人类研究,但我们描述了我们的框架如何减轻这些问题并进行IRB批准的四种方法,这些方法是代表解释性的多样性:GradCam,Bagnet ,protopnet和prodotree。我们的结果表明,解释(无论它们是否实际正确)发芽人类信任,但用户对用户不够明确,以区分正确和不正确的预测。最后,我们还开展框架以实现未来的研究,并鼓励更多以人以人为本的解释方法。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
自动驾驶在过去十年中取得了重大的研究和发展中的重要里程碑。在道路上的自动车辆部署时,对该领域的兴趣越来越令人兴趣,承诺更安全,更生态的运输系统。随着计算强大的人工智能(AI)技术的兴起,自动车辆可以用高精度感测它们的环境,进行安全的实时决策,并在没有人类干预的情况下更可靠地运行。然而,在现有技术中,人类智能决策通常不可能理解,这种缺陷阻碍了这种技术在社会上可接受。因此,除了制造安全的实时决策之外,自治车辆的AI系统还需要解释如何构建这些决策,以便在许多司法管辖区兼容监管。我们的研究在开发可解释的人工智能(XAI)的自治车辆方法上阐明了全面的光芒。特别是,我们做出以下贡献。首先,我们在最先进的自主车辆行业的解释方面彻底概述了目前的差距。然后,我们显示了该领域的解释和解释接收器的分类。第三,我们为端到端自主驾驶系统的架构提出了一个框架,并证明了Xai在调试和调节这些系统中的作用。最后,作为未来的研究方向,我们提供了XAI自主驾驶方法的实地指南,可以提高运营安全性和透明度,以实现监管机构,制造商和所有参与利益相关者的公共批准。
translated by 谷歌翻译
各种工作表明,图像的令人难忘性在人们中一致,因此可以被视为图像的内在特性。使用计算机视觉模型,我们可以对人们记住或忘记做出具体的预测。虽然老工作已经使用了现在过时的深度学习架构来预测图像令人难忘,但该领域的创新使我们的新技术适用于这个问题。在这里,我们提出并评估了五个替代的深度学习模型,在过去五年中利用现场开发的替代深度学习模型,这主要是引入残余神经网络,这旨在允许模型在令人难忘的估计过程中使用语义信息。通过构建的组合数据集进行了本领域的先前状态测试这些新模型,以优化类别内和跨类别预测。我们的研究结果表明,关键的令人难忘网络夸大了其概括性,并在其培训集上被过度了。我们的新模型优于此前的模型,导致我们得出结论,残差网络在令人难忘的回归中占据了更简单的卷积神经网络。我们使新的最先进的模型容易获得研究界,允许内存研究人员对更广泛的图像上的难忘性进行预测。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
使用计算机视觉对间接费用的分析是一个问题,在学术文献中受到了很大的关注。在这个领域运行的大多数技术都非常专业,需要大型数据集的昂贵手动注释。这些问题通过开发更通用的框架来解决这些问题,并结合了表示学习的进步,该框架可以更灵活地分析具有有限标记数据的新图像类别。首先,根据动量对比机制创建了未标记的空中图像数据集的强大表示。随后,通过构建5个标记图像的准确分类器来专门用于不同的任务。从6000万个未标记的图像中,成功的低水平检测城市基础设施进化,体现了我们推进定量城市研究的巨大潜力。
translated by 谷歌翻译