由于机器学习越来越多地应用于高冲击,高风险域,因此有许多新方法旨在使AI模型更具人类解释。尽管最近的可解释性工作增长,但缺乏对所提出的技术的系统评价。在这项工作中,我们提出了一种新的人类评估框架蜂巢(可视化解释的人类可解释性),用于计算机愿景中的不同解释性方法;据我们所知,这是它的第一个工作。我们认为,人类研究应该是正确评估方法对人类用户的可解释方式的金标。虽然由于与成本,研究设计和跨方法比较相关的挑战,我们常常避免人类研究,但我们描述了我们的框架如何减轻这些问题并进行IRB批准的四种方法,这些方法是代表解释性的多样性:GradCam,Bagnet ,protopnet和prodotree。我们的结果表明,解释(无论它们是否实际正确)发芽人类信任,但用户对用户不够明确,以区分正确和不正确的预测。最后,我们还开展框架以实现未来的研究,并鼓励更多以人以人为本的解释方法。
translated by 谷歌翻译
基于概念的解释性方法旨在使用一组预定义的语义概念来解释深度神经网络模型的预测。这些方法在新的“探针”数据集上评估了训练有素的模型,并将模型预测与该数据集中标记的视觉概念相关联。尽管他们受欢迎,但他们的局限性并未被文献所理解和阐明。在这项工作中,我们分析了基于概念的解释中的三个常见因素。首先,选择探针数据集对生成的解释有深远的影响。我们的分析表明,不同的探针数据集可能会导致非常不同的解释,并表明这些解释在探针数据集之外不可概括。其次,我们发现探针数据集中的概念通常比他们声称要解释的课程更不太明显,更难学习,这使解释的正确性提出了质疑。我们认为,仅在基于概念的解释中才能使用视觉上的显着概念。最后,尽管现有方法使用了数百甚至数千个概念,但我们的人类研究揭示了32个或更少的概念更严格的上限,除此之外,这些解释实际上不太有用。我们对基于概念的解释性方法的未来发展和分析提出建议。可以在\ url {https://github.com/princetonvisualai/overlookedfactors}找到我们的分析和用户界面的代码。
translated by 谷歌翻译
在许多现实世界中的高级应用程序中,解释人工智能(AI)模型的决策(AI)模型越来越重要。数以百计的论文提出了新功能归因方法,在其工作中讨论或利用这些工具。然而,尽管人类是目标最终用户,但大多数归因方法仅在代理自动评估指标上进行评估(Zhang等人,2018年; Zhou等人,2016年; Petsiuk等人,2018年)。在本文中,我们进行了首个用户研究,以衡量归因地图的有效性,以帮助人类进行成像网分类和斯坦福犬细粒分类,以及图像是自然或对抗性的(即包含对抗性扰动)。总体而言,特征归因比显示最近的训练集示例的人更有效。在一项艰巨的狗分类的艰巨任务中,向人类提供归因地图无济于事,而是与仅AI相比会损害人类团队的性能。重要的是,我们发现自动归因地图评估措施与实际人类AI团队的绩效较差。我们的发现鼓励社区严格测试其在下游人类应用应用程序上的方法,并重新考虑现有的评估指标。
translated by 谷歌翻译
随着AI系统表现出越来越强烈的预测性能,它们的采用已经在许多域中种植。然而,在刑事司法和医疗保健等高赌场域中,由于安全,道德和法律问题,往往是完全自动化的,但是完全手工方法可能是不准确和耗时的。因此,对研究界的兴趣日益增长,以增加人力决策。除了为此目的开发AI技术之外,人民AI决策的新兴领域必须采用实证方法,以形成对人类如何互动和与AI合作做出决定的基础知识。为了邀请和帮助结构研究努力了解理解和改善人为 - AI决策的研究,我们近期对本课题的实证人体研究的文献。我们总结了在三个重要方面的100多篇论文中的研究设计选择:(1)决定任务,(2)AI模型和AI援助要素,以及(3)评估指标。对于每个方面,我们总结了当前的趋势,讨论了现场当前做法中的差距,并列出了未来研究的建议。我们的调查强调了开发共同框架的需要考虑人类 - AI决策的设计和研究空间,因此研究人员可以在研究设计中进行严格的选择,研究界可以互相构建并产生更广泛的科学知识。我们还希望这项调查将成为HCI和AI社区的桥梁,共同努力,相互塑造人类决策的经验科学和计算技术。
translated by 谷歌翻译
已经提出了多种解释性方法和理论评价分数。然而,尚不清楚:(1)这些方法有多有用的现实情景和(2)理论措施如何预测人类实际使用方法的有用性。为了填补这一差距,我们在规模中进行了人类的心理物理学实验,以评估人类参与者(n = 1,150)以利用代表性归因方法学习预测不同图像分类器的决定的能力。我们的结果表明,用于得分的理论措施可解释方法的反映在现实世界方案中的个人归因方法的实际实用性不佳。此外,个人归因方法帮助人类参与者预测分类器的决策的程度在分类任务和数据集中广泛变化。总体而言,我们的结果突出了该领域的根本挑战 - 建议致力于开发更好的解释方法和部署人以人为本的评估方法。我们将制定框架的代码可用于缓解新颖解释性方法的系统评估。
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
在许多高风险应用中,人工智能(AI)的预测越来越重要,甚至是必要的,而人类是最终的决策者。在这项工作中,我们提出了两种自我解剖图像分类器的新型架构,这些架构首先解释,然后通过利用查询图像和示例之间的视觉对应关系来预测(与事后解释)。我们的模型始终在分布(OOD)数据集上始终改进(提高1-4分),同时在分布测试中略差(比Resnet-50)和$ k $ near的邻居分类器更差(1至2分)。 (KNN)。通过大规模的人类对成像网和幼崽的研究,我们基于对应的解释对用户的解释比KNN解释更有用。我们的解释可帮助用户更准确地拒绝AI的错误决策,而不是所有其他测试方法。有趣的是,我们首次表明,在ImageNet和Cub图像分类任务中,有可能实现互补的人类团队的准确性(即比Ai-Olone或单词更高)。
translated by 谷歌翻译
Explainable artificial intelligence (XAI) is essential for enabling clinical users to get informed decision support from AI and comply with evidence-based medical practice. Applying XAI in clinical settings requires proper evaluation criteria to ensure the explanation technique is both technically sound and clinically useful, but specific support is lacking to achieve this goal. To bridge the research gap, we propose the Clinical XAI Guidelines that consist of five criteria a clinical XAI needs to be optimized for. The guidelines recommend choosing an explanation form based on Guideline 1 (G1) Understandability and G2 Clinical relevance. For the chosen explanation form, its specific XAI technique should be optimized for G3 Truthfulness, G4 Informative plausibility, and G5 Computational efficiency. Following the guidelines, we conducted a systematic evaluation on a novel problem of multi-modal medical image explanation with two clinical tasks, and proposed new evaluation metrics accordingly. Sixteen commonly-used heatmap XAI techniques were evaluated and found to be insufficient for clinical use due to their failure in G3 and G4. Our evaluation demonstrated the use of Clinical XAI Guidelines to support the design and evaluation of clinically viable XAI.
translated by 谷歌翻译
机器学习算法可以在当代智能系统中进行高级决策。研究表明,它们的模型性能与解释性之间存在权衡。具有较高性能的机器学习模型通常基于更复杂的算法,因此缺乏解释性,反之亦然。但是,从最终用户的角度来看,这种权衡几乎没有经验证据。我们旨在通过进行两个用户实验来提供经验证据。使用两个不同的数据集,我们首先测量五种常见的机器学习算法的权衡。其次,我们解决了最终用户对可解释的人工智能增强的看法的问题,旨在增加对高性能复杂模型的决策逻辑的理解。我们的结果与权衡曲线的广泛假设有所不同,并表明模型性能和解释性之间的权衡在最终用户的感知中逐渐少得多。这与假定的固有模型可解释性形成鲜明对比。此外,我们发现折衷是由于数据复杂性而成为情境。我们的第二次实验的结果表明,尽管可以使用可解释的人工智能增强来提高解释性,但解释的类型在最终用户感知中起着至关重要的作用。
translated by 谷歌翻译
最近的工作表明,当AI的预测不可靠时,可以学会推迟人类的选择性预测系统的潜在好处,特别是提高医疗保健等高赌注应用中AI系统的可靠性。然而,大多数事先工作假定当他们解决预测任务时,人类行为仍然保持不变,作为人类艾队团队的一部分而不是自己。我们表明,通过执行实验来规定在选择性预测的背景下量化人AI相互作用的实验并非如此。特别是,我们研究将不同类型信息传送给人类的影响,了解AI系统的决定推迟。使用现实世界的保护数据和选择性预测系统,可以在单独工作的人体或AI系统上提高预期准确性,我们表明,这种消息传递对人类判断的准确性产生了重大影响。我们的结果研究了消息传递策略的两个组成部分:1)人类是否被告知AI系统的预测和2)是否被告知选择性预测系统的决定推迟。通过操纵这些消息传递组件,我们表明,通过通知人类推迟的决定,可以显着提高人类的性能,但不透露对AI的预测。因此,我们表明,考虑在设计选择性预测系统时如何传送到人类的决定是至关重要的,并且必须使用循环框架仔细评估人类-AI团队的复合精度。
translated by 谷歌翻译
越来越多的研究进行了人类主题评估,以研究为用户提供机器学习模型的解释是否可以帮助他们制定实际现实世界中的用例。但是,运行的用户研究具有挑战性且昂贵,因此每个研究通常只评估有限的不同设置,例如,研究通常只评估一些任意选择的解释方法。为了应对这些挑战和援助用户研究设计,我们介绍了用用例的模拟评估(Simevals)。 SIMEVALS涉及培训算法剂,以输入信息内容(例如模型解释),这些信息内容将在人类学科研究中提交给每个参与者,以预测感兴趣的用例的答案。算法代理的测试集精度提供了衡量下游用例信息内容的预测性。我们对三种现实世界用例(正向模拟,模型调试和反事实推理)进行全面评估,以证明Simevals可以有效地确定哪种解释方法将为每个用例提供帮助。这些结果提供了证据表明,Simevals可用于有效筛选一组重要的用户研究设计决策,例如在进行潜在昂贵的用户研究之前,选择应向用户提供哪些解释。
translated by 谷歌翻译
现有的可解释人工智能(XAI)算法的界限仅限于技术用户对解释性的需求所基于的问题。这项研究范式不成比例地忽略了XAI的非技术最终用户的较大群体,他们没有技术知识,但需要在其AI-ASS辅助批判性决定中进行解释。缺乏以解释性为重点的功能支持可能会阻碍在医疗保健,刑事司法,金融和自动驾驶系统等高风险领域中对AI的安全和负责任的使用。在这项工作中,我们探讨了如何设计为最终用户的关键任务量身定制的XAI如何激发新技术问题的框架。为了引起用户对XAI算法的解释和要求,我们首先将八个解释表格确定为AI研究人员和最终用户之间的通信工具,例如使用功能,示例或规则来解释。然后,我们在实现不同的解释目标(例如验证AI决策并改善用户的预测结果)的背景下,使用32名外行参与者进行用户研究。基于用户研究结果,我们确定并提出新颖的XAI技术问题,并根据用户的解释目标提出评估度量验证能力。我们的工作表明,在最终用户使用XAI中解决技术问题可以激发新的研究问题。这样的最终用户启发的研究问题有可能通过使人工智能民主化并确保在关键领域中对AI负责使用,从而促进社会利益。
translated by 谷歌翻译
机器学习模型需要提供对比解释,因为人们经常寻求理解为什么发生令人费解的预测而不是一些预期的结果。目前的对比解释是实例或原始特征之间的基本比较,这仍然难以解释,因为它们缺乏语义含义。我们认为解释必须与其他概念,假设和协会更加相关。受到认知心理学的感知过程的启发,我们提出了具有对比显着性,反事实合成和对比提示的可靠可解释的AI的XAI感知处理框架和REXNET模型。我们调查了声乐情绪识别的应用,实施了模块化的多任务深度神经网络,以预测言论的情感。从思想和对照研究来看,我们发现,反事实解释是有用的,并进一步增强了语义线索,但不具有显着性解释。这项工作为提供和评估了感知应用提供了可关联的对比解释的AI,提供了深度识别。
translated by 谷歌翻译
深层神经网络以其对各种机器学习和人工智能任务的精湛处理而闻名。但是,由于其过度参数化的黑盒性质,通常很难理解深层模型的预测结果。近年来,已经提出了许多解释工具来解释或揭示模型如何做出决策。在本文中,我们回顾了这一研究,并尝试进行全面的调查。具体来说,我们首先介绍并阐明了人们通常会感到困惑的两个基本概念 - 解释和解释性。为了解决解释中的研究工作,我们通过提出新的分类法来阐述许多解释算法的设计。然后,为了了解解释结果,我们还调查了评估解释算法的性能指标。此外,我们总结了使用“可信赖”解释算法评估模型的解释性的当前工作。最后,我们审查并讨论了深层模型的解释与其他因素之间的联系,例如对抗性鲁棒性和从解释中学习,并介绍了一些开源库,以解释算法和评估方法。
translated by 谷歌翻译
在过去的十年中,深度学习模型在机器学习的不同领域取得了巨大的成功。但是,这些模型的大小和复杂性使它们难以理解。为了使它们更容易解释,最近的一些作品着重于通过人类解剖的语义属性来解释深神网络的部分。但是,仅使用语义属性完全解释复杂的模型可能是不可能的。在这项工作中,我们建议使用一小部分无法解释的功能来增强这些属性。具体而言,我们开发了一个新颖的解释框架(通过标记和未标记分解的解释),将模型的预测分解为两个部分:一个可以通过语义属性的线性组合来解释,而另一部分则取决于未解释的功能。 。通过识别后者,我们能够分析模型的“无法解释的”部分,从而了解模型使用的信息。我们表明,一组未标记的功能可以推广到具有相同功能空间的多种型号,并将我们的作品与两种流行的面向属性的方法,可解释的基础分解和概念瓶颈进行比较,并讨论Elude提供的其他见解。
translated by 谷歌翻译
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译
与此同时,在可解释的人工智能(XAI)的研究领域中,已经开发了各种术语,动机,方法和评估标准。随着XAI方法的数量大大增长,研究人员以及从业者以及从业者需要一种方法:掌握主题的广度,比较方法,并根据特定用例所需的特征选择正确的XAI方法语境。在文献中,可以找到许多不同细节水平和深度水平的XAI方法分类。虽然他们经常具有不同的焦点,但它们也表现出许多重叠点。本文统一了这些努力,并提供了XAI方法的分类,这是关于目前研究中存在的概念的概念。在结构化文献分析和元研究中,我们识别并审查了XAI方法,指标和方法特征的50多个最引用和最新的调查。总结在调查调查中,我们将文章的术语和概念合并为统一的结构化分类。其中的单一概念总计超过50个不同的选择示例方法,我们相应地分类。分类学可以为初学者,研究人员和从业者提供服务作为XAI方法特征和方面的参考和广泛概述。因此,它提供了针对有针对性的,用例导向的基础和上下文敏感的未来研究。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译