在高风险领域中采用卷积神经网络(CNN)模型受到了他们无法满足社会对决策透明度的需求的阻碍。到目前为止,已经出现了越来越多的方法来开发可通过设计解释的CNN模型。但是,这样的模型无法根据人类的看法提供解释,同时保持有能力的绩效。在本文中,我们通过实例化固有可解释的CNN模型的新颖的一般框架来应对这些挑战,该模型名为E pluribus unum unum Change Chandn(EPU-CNN)。 EPU-CNN模型由CNN子网络组成,每个工程都会收到表达感知特征的输入图像的不同表示,例如颜色或纹理。 EPU-CNN模型的输出由分类预测及其解释组成,其基于输入图像不同区域的感知特征的相对贡献。 EPU-CNN模型已在各种可公开可用的数据集以及贡献的基准数据集上进行了广泛的评估。医学数据集用于证明EPU-CNN在医学中对风险敏感的决策的适用性。实验结果表明,与其他CNN体系结构相比,EPU-CNN模型可以实现可比或更好的分类性能,同时提供人类可感知的解释。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
Age-related macular degeneration (AMD) is a degenerative disorder affecting the macula, a key area of the retina for visual acuity. Nowadays, it is the most frequent cause of blindness in developed countries. Although some promising treatments have been developed, their effectiveness is low in advanced stages. This emphasizes the importance of large-scale screening programs. Nevertheless, implementing such programs for AMD is usually unfeasible, since the population at risk is large and the diagnosis is challenging. All this motivates the development of automatic methods. In this sense, several works have achieved positive results for AMD diagnosis using convolutional neural networks (CNNs). However, none incorporates explainability mechanisms, which limits their use in clinical practice. In that regard, we propose an explainable deep learning approach for the diagnosis of AMD via the joint identification of its associated retinal lesions. In our proposal, a CNN is trained end-to-end for the joint task using image-level labels. The provided lesion information is of clinical interest, as it allows to assess the developmental stage of AMD. Additionally, the approach allows to explain the diagnosis from the identified lesions. This is possible thanks to the use of a CNN with a custom setting that links the lesions and the diagnosis. Furthermore, the proposed setting also allows to obtain coarse lesion segmentation maps in a weakly-supervised way, further improving the explainability. The training data for the approach can be obtained without much extra work by clinicians. The experiments conducted demonstrate that our approach can identify AMD and its associated lesions satisfactorily, while providing adequate coarse segmentation maps for most common lesions.
translated by 谷歌翻译
深层神经网络以其对各种机器学习和人工智能任务的精湛处理而闻名。但是,由于其过度参数化的黑盒性质,通常很难理解深层模型的预测结果。近年来,已经提出了许多解释工具来解释或揭示模型如何做出决策。在本文中,我们回顾了这一研究,并尝试进行全面的调查。具体来说,我们首先介绍并阐明了人们通常会感到困惑的两个基本概念 - 解释和解释性。为了解决解释中的研究工作,我们通过提出新的分类法来阐述许多解释算法的设计。然后,为了了解解释结果,我们还调查了评估解释算法的性能指标。此外,我们总结了使用“可信赖”解释算法评估模型的解释性的当前工作。最后,我们审查并讨论了深层模型的解释与其他因素之间的联系,例如对抗性鲁棒性和从解释中学习,并介绍了一些开源库,以解释算法和评估方法。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
由于自然语言处理和基于计算机视觉模型的显着进步,视觉问题应答(VQA)系统变得越来越聪明,高级。然而,在处理相对复杂的问题时,它们仍然易于出错。因此,在采用结果之前了解VQA模型的行为非常重要。在本文中,我们通过生成反事实图像来引入VQA模型的可解释方法。具体地,所生成的图像应该具有对原始图像具有最小可能的改变,并引导VQA模型来提供不同的答案。此外,我们的方法确保生成的图像是逼真的。由于无法使用定量度量来评估模型的可解释性,因此我们进行了用户学习,以评估我们方法的不同方面。除了在单个图像上解释VQA模型的结果,所获得的结果和讨论还提供了对VQA模型的行为的广泛解释。
translated by 谷歌翻译
无法解释的黑框模型创建场景,使异常引起有害响应,从而造成不可接受的风险。这些风险促使可解释的人工智能(XAI)领域通过评估黑盒神经网络中的局部解释性来改善信任。不幸的是,基本真理对于模型的决定不可用,因此评估仅限于定性评估。此外,可解释性可能导致有关模型或错误信任感的不准确结论。我们建议通过探索Black-Box模型的潜在特征空间来从用户信任的有利位置提高XAI。我们提出了一种使用典型的几弹网络的Protoshotxai方法,该方法探索了不同类别的非线性特征之间的对比歧管。用户通过扰动查询示例的输入功能并记录任何类的示例子集的响应来探索多种多样。我们的方法是第一个可以将其扩展到很少的网络的本地解释的XAI模型。我们将ProtoShotxai与MNIST,Omniglot和Imagenet的最新XAI方法进行了比较,以进行定量和定性,Protoshotxai为模型探索提供了更大的灵活性。最后,Protoshotxai还展示了对抗样品的新颖解释和检测。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
卷积神经网络(CNN)以其出色的功能提取能力而闻名,可以从数据中学习模型,但被用作黑匣子。对卷积滤液和相关特征的解释可以帮助建立对CNN的理解,以区分各种类别。在这项工作中,我们关注的是CNN模型的解释性,称为CNNexplain,该模型用于COVID-19和非CoVID-19分类,重点是卷积过滤器的特征解释性,以及这些功能如何有助于分类。具体而言,我们使用了各种可解释的人工智能(XAI)方法,例如可视化,SmoothGrad,Grad-Cam和Lime来提供卷积滤液的解释及相关特征及其在分类中的作用。我们已经分析了使用干咳嗽光谱图的这些方法的解释。从石灰,光滑果实和GRAD-CAM获得的解释结果突出了不同频谱图的重要特征及其与分类的相关性。
translated by 谷歌翻译
使用深层神经网络的临床决策支持已成为稳步增长的兴趣的话题。尽管最近的工作反复证明,深度学习比传统方法具有主要优势,但临床医生通常不愿采用这项技术,因为其基本决策过程被认为是内在的,难以理解的。近年来,各种方法已经成功地提供了更深入的见解来解决这一问题。最值得注意的是,加性功能归因方法能够通过创建一个显着映射来将决策传播回输入空间,从而使从业者可以“查看网络看到的内容”。但是,生成的地图的质量可能会变得很差,并且只要有限的数据就可以 - 在临床环境中的典型情况。我们提出了一种基于CycleGAN激活最大化的新决策解释方案,该方案即使在较小的数据集中也会生成分类器决策的高质量可视化。我们进行了一项用户研究,其中我们在LIDC数据集上评估了用于肺部病变恶性分类的方法,用于超声图像乳腺癌检测的母乳数据集以及CIFAR-10数据集的两个子集用于RBG图像对象对象识别。在这项用户研究中,我们的方法清楚地表现出了医学成像数据集上的现有方法,并在自然图像设置中排名第二。通过我们的方法,我们为更好地理解基于深神网络的临床决策支持系统做出了重大贡献,因此旨在促进总体临床接受。
translated by 谷歌翻译
Post-hoc analysis is a popular category in eXplainable artificial intelligence (XAI) study. In particular, methods that generate heatmaps have been used to explain the deep neural network (DNN), a black-box model. Heatmaps can be appealing due to the intuitive and visual ways to understand them but assessing their qualities might not be straightforward. Different ways to assess heatmaps' quality have their own merits and shortcomings. This paper introduces a synthetic dataset that can be generated adhoc along with the ground-truth heatmaps for more objective quantitative assessment. Each sample data is an image of a cell with easily recognized features that are distinguished from localization ground-truth mask, hence facilitating a more transparent assessment of different XAI methods. Comparison and recommendations are made, shortcomings are clarified along with suggestions for future research directions to handle the finer details of select post-hoc analysis methods. Furthermore, mabCAM is introduced as the heatmap generation method compatible with our ground-truth heatmaps. The framework is easily generalizable and uses only standard deep learning components.
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable.Our approach -Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fullyconnected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multimodal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative vi-
translated by 谷歌翻译