Graph Neural Networks (GNNs) are prominent in handling sparse and unstructured data efficiently and effectively. Specifically, GNNs were shown to be highly effective for node classification tasks, where labelled information is available for only a fraction of the nodes. Typically, the optimization process, through the objective function, considers only labelled nodes while ignoring the rest. In this paper, we propose novel objective terms for the training of GNNs for node classification, aiming to exploit all the available data and improve accuracy. Our first term seeks to maximize the mutual information between node and label features, considering both labelled and unlabelled nodes in the optimization process. Our second term promotes anisotropic smoothness in the prediction maps. Lastly, we propose a cross-validating gradients approach to enhance the learning from labelled data. Our proposed objectives are general and can be applied to various GNNs and require no architectural modifications. Extensive experiments demonstrate our approach using popular GNNs like GCN, GAT and GCNII, reading a consistent and significant accuracy improvement on 10 real-world node classification datasets.
translated by 谷歌翻译
图形卷积网络(GCN)类似于卷积神经网络(CNN),通常基于两个主要操作 - 空间和点的卷积。在GCN的背景下,与CNN不同,通常选择基于图形laplacian的预定的​​空间操作员,通常只允许学习点的操作。但是,学习有意义的空间操作员对于开发更具表现力的GCN以提高性能至关重要。在本文中,我们提出了PathGCN,这是一种从图上的随机路径学习空间操作员的新方法。我们分析方法的收敛及其与现有GCN的差异。此外,我们讨论了将我们所学的空间操作员与点卷积相结合的几种选择。我们在众多数据集上进行的广泛实验表明,通过适当地学习空间和角度的卷积,可以固有地避免诸如过度光滑的现象,并实现新的最先进的性能。
translated by 谷歌翻译
数据增强已广泛用于图像数据和语言数据,但仍然探索图形神经网络(GNN)。现有方法专注于从全局视角增强图表数据,并大大属于两个类型:具有特征噪声注入的结构操纵和对抗训练。但是,最近的图表数据增强方法忽略了GNNS“消息传递机制的本地信息的重要性。在这项工作中,我们介绍了本地增强,这通过其子图结构增强了节点表示的局部。具体而言,我们将数据增强模拟为特征生成过程。鉴于节点的功能,我们的本地增强方法了解其邻居功能的条件分布,并生成更多邻居功能,以提高下游任务的性能。基于本地增强,我们进一步设计了一个新颖的框架:La-GNN,可以以即插即用的方式应用于任何GNN模型。广泛的实验和分析表明,局部增强一致地对各种基准的各种GNN架构始终如一地产生性能改进。
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译
尽管近期图形神经网络(GNN)成功,但常见的架构通常表现出显着的限制,包括对过天飞机,远程依赖性和杂散边缘的敏感性,例如,由于图形异常或对抗性攻击。至少部分地解决了一个简单的透明框架内的这些问题,我们考虑了一个新的GNN层系列,旨在模仿和整合两个经典迭代算法的更新规则,即近端梯度下降和迭代重复最小二乘(IRLS)。前者定义了一个可扩展的基础GNN架构,其免受过性的,而仍然可以通过允许任意传播步骤捕获远程依赖性。相反,后者产生了一种新颖的注意机制,该注意机制被明确地锚定到底层端到端能量函数,以及相对于边缘不确定性的稳定性。当结合时,我们获得了一个非常简单而强大的模型,我们在包括标准化基准,与异常扰动的图形,具有异化的图形和涉及远程依赖性的图形的不同方案的极其简单而强大的模型。在此过程中,我们与已明确为各个任务设计的SOTA GNN方法进行比较,实现竞争或卓越的节点分类准确性。我们的代码可以在https://github.com/fftyyy/twirls获得。
translated by 谷歌翻译
图形神经网络(GNN)在许多基于图的任务中表现出强大的表示能力。具体而言,由于其简单性和性能优势,GNN(例如APPNP)的解耦结构变得流行。但是,这些GNN的端到端培训使它们在计算和记忆消耗方面效率低下。为了应对这些局限性,在这项工作中,我们为图形神经网络提供了交替的优化框架,不需要端到端培训。在不同设置下进行的广泛实验表明,所提出的算法的性能与现有的最新算法相当,但具有更好的计算和记忆效率。此外,我们表明我们的框架可以利用优势来增强现有的脱钩GNN。
translated by 谷歌翻译
图形神经网络(GNNS)对图表上的半监督节点分类展示了卓越的性能,结果是它们能够同时利用节点特征和拓扑信息的能力。然而,大多数GNN隐含地假设曲线图中的节点和其邻居的标签是相同或一致的,其不包含在异质图中,其中链接节点的标签可能不同。因此,当拓扑是非信息性的标签预测时,普通的GNN可以显着更差,而不是在每个节点上施加多层Perceptrons(MLPS)。为了解决上述问题,我们提出了一种新的$ -laplacian基于GNN模型,称为$ ^ P $ GNN,其消息传递机制来自离散正则化框架,并且可以理论上解释为多项式图的近似值在$ p $ -laplacians的频谱域上定义过滤器。光谱分析表明,新的消息传递机制同时用作低通和高通滤波器,从而使$ ^ P $ GNNS对同性恋和异化图有效。关于现实世界和合成数据集的实证研究验证了我们的调查结果,并证明了$ ^ P $ GNN明显优于异交基准的几个最先进的GNN架构,同时在同性恋基准上实现竞争性能。此外,$ ^ p $ gnns可以自适应地学习聚合权重,并且对嘈杂的边缘具有强大。
translated by 谷歌翻译
当前的图形神经网络(GNNS)遇到了过度光滑的问题,这导致无法区分的节点表示和较低的模型性能,并具有更多的GNN层。近年来已经提出了许多方法来解决这个问题。但是,现有的解决过度平滑的方法强调模型性能并忽略节点表示的过度平滑度。一次采用另外一种方法,同时缺乏整体框架​​来共同利用多个解决方案来解决过度光滑的挑战。为了解决这些问题,我们提出了Grato,这是一个基于神经体系结构搜索的框架,以自动搜索GNNS体系结构。 Grato采用新颖的损失功能,以促进模型性能和表示平滑度之间的平衡。除了现有方法外,我们的搜索空间还包括DropAttribute,这是一种减轻过度光滑挑战的新计划,以充分利用各种解决方案。我们在六个现实世界数据集上进行了广泛的实验,以评估Grato,这表明Grato在过度平滑的指标中的表现优于基准,并在准确性方面取得了竞争性能。 Grato在GNN层数量增加的情况下特别有效且健壮。进一步的实验确定了通过grato学习的节点表示的质量和模型架构的有效性。我们在Github(\ url {https://github.com/fxsxjtu/grato})上提供Grato的CIDE。
translated by 谷歌翻译
We introduce a self-supervised approach for learning node and graph level representations by contrasting structural views of graphs. We show that unlike visual representation learning, increasing the number of views to more than two or contrasting multi-scale encodings do not improve performance, and the best performance is achieved by contrasting encodings from first-order neighbors and a graph diffusion. We achieve new state-ofthe-art results in self-supervised learning on 8 out of 8 node and graph classification benchmarks under the linear evaluation protocol. For example, on Cora (node) and Reddit-Binary (graph) classification benchmarks, we achieve 86.8% and 84.5% accuracy, which are 5.5% and 2.4% relative improvements over previous state-of-the-art. When compared to supervised baselines, our approach outperforms them in 4 out of 8 benchmarks.
translated by 谷歌翻译
Graph Neural Networks (GNNs) are powerful tools for graph representation learning. Despite their rapid development, GNNs also face some challenges, such as over-fitting, over-smoothing, and non-robustness. Previous works indicate that these problems can be alleviated by random dropping methods, which integrate augmented data into models by randomly masking parts of the input. However, some open problems of random dropping on GNNs remain to be solved. First, it is challenging to find a universal method that are suitable for all cases considering the divergence of different datasets and models. Second, augmented data introduced to GNNs causes the incomplete coverage of parameters and unstable training process. Third, there is no theoretical analysis on the effectiveness of random dropping methods on GNNs. In this paper, we propose a novel random dropping method called DropMessage, which performs dropping operations directly on the propagated messages during the message-passing process. More importantly, we find that DropMessage provides a unified framework for most existing random dropping methods, based on which we give theoretical analysis of their effectiveness. Furthermore, we elaborate the superiority of DropMessage: it stabilizes the training process by reducing sample variance; it keeps information diversity from the perspective of information theory, enabling it become a theoretical upper bound of other methods. To evaluate our proposed method, we conduct experiments that aims for multiple tasks on five public datasets and two industrial datasets with various backbone models. The experimental results show that DropMessage has the advantages of both effectiveness and generalization, and can significantly alleviate the problems mentioned above.
translated by 谷歌翻译
图形神经网络(GNNS)由于其强大的表示能力而广泛用于图形结构化数据处理。通常认为,GNNS可以隐式消除非预测性的噪音。但是,对图神经网络中隐式降解作用的分析仍然开放。在这项工作中,我们进行了一项全面的理论研究,并分析了隐式denoising在GNN中发生的何时以及为什么发生。具体而言,我们研究噪声矩阵的收敛性。我们的理论分析表明,隐式转化很大程度上取决于连接性,图形大小和GNN体系结构。此外,我们通过扩展图形信号降解问题来正式定义并提出对抗图信号denoising(AGSD)问题。通过解决这样的问题,我们得出了一个可靠的图形卷积,可以增强节点表示的平滑度和隐式转化效果。广泛的经验评估验证了我们的理论分析和我们提出的模型的有效性。
translated by 谷歌翻译
图形神经网络(GNNS)从节点功能和输入图拓扑中利用信号来改善节点分类任务性能。然而,这些模型倾向于在异细胞图上表现不良,其中连接的节点具有不同的标记。最近提出了GNNS横跨具有不同程度的同性恋级别的图表。其中,依赖于多项式图滤波器的模型已经显示了承诺。我们观察到这些多项式图滤波器模型的解决方案也是过度确定的方程式系统的解决方案。它表明,在某些情况下,模型需要学习相当高的多项式。在调查中,我们发现由于其设计而在学习此类多项式的拟议模型。为了缓解这个问题,我们执行图表的特征分解,并建议学习作用于频谱的不同子集的多个自适应多项式滤波器。理论上和经验证明我们所提出的模型学习更好的过滤器,从而提高了分类准确性。我们研究了我们提出的模型的各个方面,包括利用潜在多项式滤波器的依义组分的数量以及节点分类任务上的各个多项式的性能的依赖性。我们进一步表明,我们的模型通过在大图中评估来扩展。我们的模型在最先进的模型上实现了高达5%的性能增益,并且通常优于现有的基于多项式滤波器的方法。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been predominant for graph learning tasks; however, recent studies showed that a well-known graph algorithm, Label Propagation (LP), combined with a shallow neural network can achieve comparable performance to GNNs in semi-supervised node classification on graphs with high homophily. In this paper, we show that this approach falls short on graphs with low homophily, where nodes often connect to the nodes of the opposite classes. To overcome this, we carefully design a combination of a base predictor with LP algorithm that enjoys a closed-form solution as well as convergence guarantees. Our algorithm first learns the class compatibility matrix and then aggregates label predictions using LP algorithm weighted by class compatibilities. On a wide variety of benchmarks, we show that our approach achieves the leading performance on graphs with various levels of homophily. Meanwhile, it has orders of magnitude fewer parameters and requires less execution time. Empirical evaluations demonstrate that simple adaptations of LP can be competitive in semi-supervised node classification in both homophily and heterophily regimes.
translated by 谷歌翻译
灵感来自深度学习的广泛成功,已经提出了图表神经网络(GNNS)来学习表达节点表示,并在各种图形学习任务中表现出有希望的性能。然而,现有的努力主要集中在提供相对丰富的金色标记节点的传统半监督设置。虽然数据标签是难以忍受的事实令人生畏的事实并且需要强化领域知识,但特别是在考虑图形结构数据的异质性时,它通常是不切实际的。在几次半监督的环境下,大多数现有GNN的性能不可避免地受到过度装备和过天际问题的破坏,在很大程度上由于标记数据的短缺。在本文中,我们提出了一种配备有新型元学习算法的解耦的网络架构来解决这个问题。从本质上讲,我们的框架META-PN通过META学习的标签传播策略在未标记节点上乘坐高质量的伪标签,这有效增强了稀缺标记的数据,同时在培训期间启用大型接受领域。广泛的实验表明,与各种基准数据集上的现有技术相比,我们的方法提供了简单且实质性的性能。
translated by 谷歌翻译
图形神经网络(GNN)是用于建模图数据的流行机器学习方法。许多GNN在同质图上表现良好,同时在异质图上表现不佳。最近,一些研究人员将注意力转移到设计GNN,以通过调整消息传递机制或扩大消息传递的接收场来设计GNN。与从模型设计的角度来减轻异性疾病问题的现有作品不同,我们建议通过重新布线结构来从正交角度研究异质图,以减少异质性并使传统GNN的表现更好。通过全面的经验研究和分析,我们验证了重新布线方法的潜力。为了充分利用其潜力,我们提出了一种名为Deep Hertophilly Graph Rewiring(DHGR)的方法,以通过添加同粒子边缘和修剪异质边缘来重新线图。通过比较节点邻居的标签/特征 - 分布的相似性来确定重新布线的详细方法。此外,我们为DHGR设计了可扩展的实现,以确保高效率。 DHRG可以轻松地用作任何GNN的插件模块,即图形预处理步骤,包括同型和异性的GNN,以提高其在节点分类任务上的性能。据我们所知,这是研究图形的第一部重新绘图图形的作品。在11个公共图数据集上进行的广泛实验证明了我们提出的方法的优势。
translated by 谷歌翻译
Over-fitting and over-smoothing are two main obstacles of developing deep Graph Convolutional Networks (GCNs) for node classification. In particular, over-fitting weakens the generalization ability on small dataset, while over-smoothing impedes model training by isolating output representations from the input features with the increase in network depth. This paper proposes DropEdge, a novel and flexible technique to alleviate both issues. At its core, DropEdge randomly removes a certain number of edges from the input graph at each training epoch, acting like a data augmenter and also a message passing reducer. Furthermore, we theoretically demonstrate that DropEdge either reduces the convergence speed of over-smoothing or relieves the information loss caused by it. More importantly, our DropEdge is a general skill that can be equipped with many other backbone models (e.g. GCN, ResGCN, GraphSAGE, and JKNet) for enhanced performance. Extensive experiments on several benchmarks verify that DropEdge consistently improves the performance on a variety of both shallow and deep GCNs. The effect of DropEdge on preventing over-smoothing is empirically visualized and validated as well. Codes are released on https://github.com/DropEdge/DropEdge.
translated by 谷歌翻译
Graph neural networks (GNNs) have been widely used under semi-supervised settings. Prior studies have mainly focused on finding appropriate graph filters (e.g., aggregation schemes) to generalize well for both homophilic and heterophilic graphs. Even though these approaches are essential and effective, they still suffer from the sparsity in initial node features inherent in the bag-of-words representation. Common in semi-supervised learning where the training samples often fail to cover the entire dimensions of graph filters (hyperplanes), this can precipitate over-fitting of specific dimensions in the first projection matrix. To deal with this problem, we suggest a simple and novel strategy; create additional space by flipping the initial features and hyperplane simultaneously. Training in both the original and in the flip space can provide precise updates of learnable parameters. To the best of our knowledge, this is the first attempt that effectively moderates the overfitting problem in GNN. Extensive experiments on real-world datasets demonstrate that the proposed technique improves the node classification accuracy up to 40.2 %
translated by 谷歌翻译
本文研究了用于无监督场景的图形神经网络(GNN)的节点表示。具体地,我们推导了理论分析,并在不适当定义的监督信号时,在不同的图形数据集中提供关于GNN的非稳定性能的实证演示。 GNN的性能取决于节点特征平滑度和图形结构的局部性。为了平滑通过图形拓扑和节点功能测量的节点接近度的差异,我们提出了帆 - 一个小说\下划线{s} elf- \下划线{a} u段图对比度\下划线{i} ve \ nignline {l}收入框架,使用两个互补的自蒸馏正则化模块,\ emph {Ie},内部和图间知识蒸馏。我们展示了帆在各种图形应用中的竞争性能。即使使用单个GNN层,Sail也在各种基准数据集中持续竞争或更好的性能,与最先进的基线相比。
translated by 谷歌翻译
由于问题过度问题,大多数现有的图形神经网络只能使用其固有有限的聚合层捕获有限的依赖性。为了克服这一限制,我们提出了一种新型的图形卷积,称为图形隐式非线性扩散(GIND),该卷积隐含地可以访问邻居的无限啤酒花,同时具有非线性扩散的自适应聚集特征,以防止过度张开。值得注意的是,我们表明,学到的表示形式可以正式化为显式凸优化目标的最小化器。有了这个属性,我们可以从优化的角度从理论上表征GIND的平衡。更有趣的是,我们可以通过修改相应的优化目标来诱导新的结构变体。具体而言,我们可以将先前的特性嵌入到平衡中,并引入跳过连接以促进训练稳定性。广泛的实验表明,GIND擅长捕获长期依赖性,并且在具有非线性扩散的同粒细胞和异性图上表现良好。此外,我们表明,我们模型的优化引起的变体可以提高性能并提高训练稳定性和效率。结果,我们的GIND在节点级别和图形级任务上都获得了重大改进。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在许多现实世界中的应用(例如建议和药物发现)中取得了巨大的成功。尽管取得了成功,但已将过度厚度确定为限制GNN绩效的关键问题之一。这表明由于堆叠聚合器,学到的节点表示是无法区分的。在本文中,我们提出了一种新的观点,以研究深度GNN的性能降低,即特征过度相关。通过有关此问题的经验和理论研究,我们证明了更深层次的GNN中的特征过度相关的存在,并揭示了导致该问题的潜在原因。为了减少功能相关性,我们提出了一个通用框架,可以鼓励GNN编码较少的冗余信息。广泛的实验表明,Decorr可以帮助实现更深入的GNN,并与现有的技术相辅相成。
translated by 谷歌翻译