在良好的弹药条件下,车辆检测准确性相当准确,但在弱光条件下容易受到检测准确性不佳。弱光和眩光的组合效果或尾灯的眩光导致最新的对象检测模型更有可能错过车辆检测。但是,热红外图像对照明的变化是可靠的,并且基于热辐射。最近,生成对抗网络(GAN)已在图像域传输任务中广泛使用。最先进的GAN型号试图通过将红外图像转换为白天的RGB图像来提高夜间车辆检测准确性。但是,与白天条件相比,在夜间条件下,这些模型在夜间条件下表现不佳。因此,这项研究试图通过提出三种不同的方法来缓解这一缺点,该方法基于两个不同级别的GAN模型的组合,试图减少白天和夜间红外图像之间的特征分布差距。通过使用最新的对象检测模型测试模型,可以完成定量分析以比较提出模型的性能与最新模型的性能。定量和定性分析都表明,所提出的模型在夜间条件下的最新车辆检测模型优于最先进的GAN模型,显示了所提出的模型的功效。
translated by 谷歌翻译
缺乏有效的目标区域使得在低强度光(包括行人识别和图像到图像翻译)中执行多个视觉功能变得困难。在这种情况下,通过使用红外和可见图像的联合使用来积累高质量的信息,即使在弱光下也可以检测行人。在这项研究中,我们将在LLVIP数据集上使用先进的深度学习模型,例如Pix2Pixgan和Yolov7,其中包含可见的信号图像对,用于低光视觉。该数据集包含33672张图像,大多数图像都是在黑暗场景中捕获的,与时间和位置紧密同步。
translated by 谷歌翻译
本文介绍了用于合成近红外(NIR)图像生成和边界盒水平检测系统的数据集。不可否认的是,诸如Tensorflow或Pytorch之类的高质量机器学习框架以及大规模的Imagenet或可可数据集借助于加速GPU硬件,已将机器学习技术的极限推向了数十多年。在这些突破中,高质量的数据集是可以在模型概括和数据驱动的深神经网络的部署方面取得成功的基本构件之一。特别是,综合数据生成任务通常比其他监督方法需要更多的培训样本。因此,在本文中,我们共享从两个公共数据集(即Nirscene和Sen12ms)和我们的新颖NIR+RGB甜椒(辣椒(辣椒)数据集)重新处理的NIR+RGB数据集。我们定量和定性地证明了这些NIR+RGB数据集足以用于合成NIR图像生成。对于NIRSCENE1,SEN12MS和SEWT PEPPER数据集,我们实现了第11.36、26.53、26.53、26.53和40.15的距离(FID)。此外,我们发布了11个水果边界盒的手动注释,可以使用云服务将其作为各种格式导出。四个新添加的水果[蓝莓,樱桃,猕猴桃和小麦]化合物11新颖的边界盒数据集,在我们先前的DeepFruits项目中提出的作品[Apple,Appsicum,Capsicum,Capsicum,Mango,Orange,Rockmelon,Strawberry]。数据集的边界框实例总数为162K,可以从云服务中使用。为了评估数据集,YOLOV5单阶段检测器被利用并报告了令人印象深刻的平均水平前期,MAP [0.5:0.95]的结果为[min:0.49,最大:0.812]。我们希望这些数据集有用,并作为未来研究的基准。
translated by 谷歌翻译
生成的对抗网络(GANS)已经促进了解决图像到图像转换问题的新方向。不同的GANS在目标函数中使用具有不同损耗的发电机和鉴别器网络。仍然存在差距来填补所生成的图像的质量并靠近地面真理图像。在这项工作中,我们介绍了一个名为循环辨别生成的对抗网络(CDGAN)的新的图像到图像转换网络,填补了上述空白。除了加速本的原始架构之外,所提出的CDGAN通过结合循环图像的附加鉴别器网络来产生高质量和更现实的图像。所提出的CDGAN在三个图像到图像转换数据集上进行测试。分析了定量和定性结果,并与最先进的方法进行了比较。在三个基线图像到图像转换数据集中,所提出的CDGAN方法优于最先进的方法。该代码可在https://github.com/kishankancharagunta/cdgan获得。
translated by 谷歌翻译
在对象检测中,数据量和成本是一种权衡,在特定领域中收集大量数据是劳动密集型的。因此,现有的大规模数据集用于预训练。但是,当目标域与源域显着不同时,常规传输学习和域的适应性不能弥合域间隙。我们提出了一种数据合成方法,可以解决大域间隙问题。在此方法中,目标图像的一部分被粘贴到源图像上,并通过利用对象边界框的信息来对齐粘贴区域的位置。此外,我们介绍对抗性学习,以区分原始区域或粘贴区域。所提出的方法在大量源图像和一些目标域图像上训练。在非常不同的域问题设置中,所提出的方法比常规方法获得更高的精度,其中RGB图像是源域,而热红外图像是目标域。同样,在模拟图像与真实图像的情况下,提出的方法达到了更高的精度。
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译
横梁面部识别(CFR)旨在识别个体,其中比较面部图像源自不同的感测模式,例如红外与可见的。虽然CFR由于与模态差距相关的面部外观的显着变化,但CFR具有比经典的面部识别更具挑战性,但它在具有有限或挑战的照明的场景中,以及在呈现攻击的情况下,它是优越的。与卷积神经网络(CNNS)相关的人工智能最近的进展使CFR的显着性能提高了。由此激励,这项调查的贡献是三倍。我们提供CFR的概述,目标是通过首先正式化CFR然后呈现具体相关的应用来比较不同光谱中捕获的面部图像。其次,我们探索合适的谱带进行识别和讨论最近的CFR方法,重点放在神经网络上。特别是,我们提出了提取和比较异构特征以及数据集的重新访问技术。我们枚举不同光谱和相关算法的优势和局限性。最后,我们讨论了研究挑战和未来的研究线。
translated by 谷歌翻译
图像到图像转换是最近使用生成对冲网络(GaN)将图像从一个域转换为另一个域的趋势。现有的GaN模型仅利用转换的输入和输出方式执行培训。在本文中,我们执行GaN模型的语义注射训练。具体而言,我们用原始输入和输出方式训练,并注入几个时代,用于从输入到语义地图的翻译。让我们将原始培训称为输入图像转换为目标域的培训。原始训练中的语义训练注射改善了训练的GaN模型的泛化能力。此外,它还以更好的方式在生成的图像中以更好的方式保留分类信息。语义地图仅在训练时间使用,并且在测试时间不需要。通过在城市景观和RGB-NIR立体数据集上使用最先进的GaN模型进行实验。与原始训练相比,在注入语义训练后,我们遵守SSIM,FID和KID等方面的提高性能。
translated by 谷歌翻译
在离岸部门以及科学界在水下行动方面的迅速发展,水下车辆变得更加复杂。值得注意的是,许多水下任务,包括对海底基础设施的评估,都是在自动水下车辆(AUV)的帮助下进行的。最近在人工智能(AI)方面取得了突破,尤其是深度学习(DL)模型和应用,这些模型和应用在各种领域都广泛使用,包括空中无人驾驶汽车,自动驾驶汽车导航和其他应用。但是,由于难以获得特定应用的水下数据集,它们在水下应用中并不普遍。从这个意义上讲,当前的研究利用DL领域的最新进步来构建从实验室环境中捕获的物品照片产生的定制数据集。通过将收集到的图像与包含水下环境的照片相结合,将生成的对抗网络(GAN)用于将实验室对象数据集转化为水下域。这些发现证明了创建这样的数据集的可行性,因为与现实世界的水下船体船体图像相比,所得图像与真实的水下环境非常相似。因此,水下环境的人工数据集可以克服因对实际水下图像的有限访问而引起的困难,并用于通过水下对象图像分类和检测来增强水下操作。
translated by 谷歌翻译
夜间热红外(NTIR)图像着色,也称为NTIR图像转换为白天颜色图像(NTIR2DC),是一个有希望的研究方向,可促进对人类和不利条件下的智能系统的夜间现场感知(例如,完整的黑暗)。但是,先前开发的方法对于小样本类别的着色性能差。此外,降低伪标签中的高置信度噪声并解决翻译过程中图像梯度消失的问题仍然不足,并且在翻译过程中防止边缘扭曲也很具有挑战性。为了解决上述问题,我们提出了一个新颖的学习框架,称为记忆引导的协作关注生成对抗网络(MORNGAN),该框架受到人类的类似推理机制的启发。具体而言,设计了记忆引导的样本选择策略和自适应协作注意力丧失,以增强小样本类别的语义保存。此外,我们提出了一个在线语义蒸馏模块,以挖掘并完善NTIR图像的伪标记。此外,引入条件梯度修复损失,以减少翻译过程中边缘失真。在NTIR2DC任务上进行的广泛实验表明,在语义保存和边缘一致性方面,提出的Morngan明显优于其他图像到图像翻译方法,这有助于显着提高对象检测精度。
translated by 谷歌翻译
我们介绍了一个自主任务生成的对抗性网络(SATGAN),并将其应用于具有现实噪声模式和从收集数据中学习的现实噪声模式和传感器特性的常住空间对象的合成高对比度科学图像的问题。由于必须保留的数据中的语义内容的高度本地化,增强这些合成数据是具有挑战性的。真正收集的图像用于训练网络的特定传感器图像应该是什么样的网络。然后,培训的网络在嘈杂的上下文图像上用作过滤器,并输出具有未嵌入的语义内容的现实看起来。该架构由条件GANS启发,但被修改为包括通过增强保留语义信息的任务网络。另外,架构被示出为减少幻觉对象的情况或在表示空间观测场景的上下文图像中的语义内容的混淆。
translated by 谷歌翻译
生成的对抗网络(GANS)最近引入了执行图像到图像翻译的有效方法。这些模型可以应用于图像到图像到图像转换中的各种域而不改变任何参数。在本文中,我们调查并分析了八个图像到图像生成的对策网络:PIX2PX,Cyclegan,Cogan,Stargan,Munit,Stargan2,Da-Gan,以及自我关注GaN。这些模型中的每一个都呈现了最先进的结果,并引入了构建图像到图像的新技术。除了对模型的调查外,我们还调查了他们接受培训的18个数据集,并在其上进行了评估的9个指标。最后,我们在常见的一组指标和数据集中呈现6种这些模型的受控实验的结果。结果混合并显示,在某些数据集,任务和指标上,某些型号优于其他型号。本文的最后一部分讨论了这些结果并建立了未来研究领域。由于研究人员继续创新新的图像到图像GAN,因此他们非常重要地了解现有方法,数据集和指标。本文提供了全面的概述和讨论,以帮助构建此基础。
translated by 谷歌翻译
使用空中无人机图像的物体检测近年来收到了很多关注。虽然可见光图像在大多数情况下足以检测对象时,热敏摄像机可以将物体检测的能力扩展到夜间或遮挡物体。因此,对象检测的RGB和红外(IR)融合方法是有用的,重要的方法。将深度学习方法应用于RGB / IR对象检测的最大挑战之一是缺乏无人机IR Imagery的可用培训数据,特别是在晚上。在本文中,我们开发了使用Airsim仿真发动机和Cyclegan创建合成红外图像的若干策略。此外,我们利用照明感知的融合框架来熔化RGB和IR图像以进行地面上的对象检测。我们对模拟和实际数据表示并测试我们的方法。我们的解决方案是在实际无人机上运行的NVIDIA Jetson Xavier上实施,需要每个RGB / IR图像对处理约28毫秒。
translated by 谷歌翻译
移动设备上的低光成像通常是由于不足的孔径穿过相对较小的孔径而挑战,导致信噪比较低。以前的大多数关于低光图像处理的作品仅关注单个任务,例如照明调整,颜色增强或删除噪声;或在密切依赖于从特定的摄像机模型中收集的长时间曝光图像对的关节照明调整和降解任务上,因此,这些方法在需要摄像机特定的关节增强和恢复的现实环境中不太实用且可推广。为了解决这个问题,在本文中,我们提出了一个低光图像处理框架,该框架可以执行关节照明调整,增强色彩和降解性。考虑到模型特异性数据收集的难度和捕获图像的超高定义,我们设计了两个分支:系数估计分支以及关节增强和denoising分支。系数估计分支在低分辨率空间中起作用,并预测通过双边学习增强的系数,而关节增强和去核分支在全分辨率空间中工作,并逐步执行关节增强和脱氧。与现有方法相反,我们的框架在适应另一个摄像机模型时不需要回忆大量数据,这大大减少了微调我们用于实际使用方法所需的努力。通过广泛的实验,与当前的最新方法相比,我们在现实世界中的低光成像应用中证明了它的巨大潜力。
translated by 谷歌翻译
本文的目标是对面部素描合成(FSS)问题进行全面的研究。然而,由于获得了手绘草图数据集的高成本,因此缺乏完整的基准,用于评估过去十年的FSS算法的开发。因此,我们首先向FSS引入高质量的数据集,名为FS2K,其中包括2,104个图像素描对,跨越三种类型的草图样式,图像背景,照明条件,肤色和面部属性。 FS2K与以前的FSS数据集不同于难度,多样性和可扩展性,因此应促进FSS研究的进展。其次,我们通过调查139种古典方法,包括34个手工特征的面部素描合成方法,37个一般的神经式传输方法,43个深映像到图像翻译方法,以及35个图像 - 素描方法。此外,我们详细说明了现有的19个尖端模型的综合实验。第三,我们为FSS提供了一个简单的基准,名为FSGAN。只有两个直截了当的组件,即面部感知屏蔽和风格矢量扩展,FSGAN将超越所提出的FS2K数据集的所有先前最先进模型的性能,通过大边距。最后,我们在过去几年中汲取的经验教训,并指出了几个未解决的挑战。我们的开源代码可在https://github.com/dengpingfan/fsgan中获得。
translated by 谷歌翻译
基于深度学习的检测网络在自动驾驶系统(广告)中取得了显着进展。广告应在各种环境照明和恶劣天气条件下具有可靠的性能。然而,亮度劣化和视觉障碍物(如眩光,雾)导致视觉相机质量差,导致性能下降。为了克服这些挑战,我们探讨了利用不同数据模型的想法,这些数据模块不同于视觉数据。我们提出了一种基于多模式协作框架的全面检测系统,该框架从RGB(来自Visual Cameras)和热(来自红外相机)数据学习。该框架在学习其自身模式的学习最佳特征中提供了灵活性,同时还包含对方的互补知识。我们广泛的经验结果表明,虽然准确性的提高是标称的,但该值在于挑战性和极其困难的边缘情况,这在广告中的安全关键应用中至关重要。我们提供了在检测中使用热成像系统的效果和限制的整体视图。
translated by 谷歌翻译
内窥镜检查是空心器官内最广泛使用的癌症和息肉检测的医疗技术。但是,由于启蒙源方向,内窥镜获得的图像经常受到照明人工制品的影响。当内窥镜的光源姿势突然变化时,存在两个主要问题:产生过度曝光和不受欢迎的组织区域。这两种情况可能导致因影响区域缺乏信息而导致误诊,或者在非侵入性检查过程中使用了各种计算机视觉方法的性能(例如,大满贯,运动结构,光流,光流)。这项工作的目的是两倍:i)引入一种由生成对抗技术生成的新合成生成的数据集和ii),并探索在过度暴露和未渗透的照明中探索基于浅层和深度学习的基于浅的基于学习的图像增强方法条件。除了在7.6 fps左右的运行时间外,还通过基于深网的LMSPEC方法获得了最佳定量结果(即基于公制的结果)
translated by 谷歌翻译
Object detection models commonly deployed on uncrewed aerial systems (UAS) focus on identifying objects in the visible spectrum using Red-Green-Blue (RGB) imagery. However, there is growing interest in fusing RGB with thermal long wave infrared (LWIR) images to increase the performance of object detection machine learning (ML) models. Currently LWIR ML models have received less research attention, especially for both ground- and air-based platforms, leading to a lack of baseline performance metrics evaluating LWIR, RGB and LWIR-RGB fused object detection models. Therefore, this research contributes such quantitative metrics to the literature .The results found that the ground-based blended RGB-LWIR model exhibited superior performance compared to the RGB or LWIR approaches, achieving a mAP of 98.4%. Additionally, the blended RGB-LWIR model was also the only object detection model to work in both day and night conditions, providing superior operational capabilities. This research additionally contributes a novel labelled training dataset of 12,600 images for RGB, LWIR, and RGB-LWIR fused imagery, collected from ground-based and air-based platforms, enabling further multispectral machine-driven object detection research.
translated by 谷歌翻译
We propose an efficient and generative augmentation approach to solve the inadequacy concern of underwater debris data for visual detection. We use cycleGAN as a data augmentation technique to convert openly available, abundant data of terrestrial plastic to underwater-style images. Prior works just focus on augmenting or enhancing existing data, which moreover adds bias to the dataset. Compared to our technique, which devises variation, transforming additional in-air plastic data to the marine background. We also propose a novel architecture for underwater debris detection using an attention mechanism. Our method helps to focus only on relevant instances of the image, thereby enhancing the detector performance, which is highly obliged while detecting the marine debris using Autonomous Underwater Vehicle (AUV). We perform extensive experiments for marine debris detection using our approach. Quantitative and qualitative results demonstrate the potential of our framework that significantly outperforms the state-of-the-art methods.
translated by 谷歌翻译