The General Associative Memory Model (GAMM) has a constant state-dependant energy surface that leads the output dynamics to fixed points, retrieving single memories from a collection of memories that can be asynchronously preloaded. We introduce a new class of General Sequential Episodic Memory Models (GSEMM) that, in the adiabatic limit, exhibit temporally changing energy surface, leading to a series of meta-stable states that are sequential episodic memories. The dynamic energy surface is enabled by newly introduced asymmetric synapses with signal propagation delays in the network's hidden layer. We study the theoretical and empirical properties of two memory models from the GSEMM class, differing in their activation functions. LISEM has non-linearities in the feature layer, whereas DSEM has non-linearity in the hidden layer. In principle, DSEM has a storage capacity that grows exponentially with the number of neurons in the network. We introduce a learning rule for the synapses based on the energy minimization principle and show it can learn single memories and their sequential relationships online. This rule is similar to the Hebbian learning algorithm and Spike-Timing Dependent Plasticity (STDP), which describe conditions under which synapses between neurons change strength. Thus, GSEMM combines the static and dynamic properties of episodic memory under a single theoretical framework and bridges neuroscience, machine learning, and artificial intelligence.
translated by 谷歌翻译
平衡系统是表达神经计算的有力方法。作为特殊情况,它们包括对神经科学和机器学习的最新兴趣模型,例如平衡复发性神经网络,深度平衡模型或元学习。在这里,我们提出了一个新的原则,用于学习具有时间和空间本地规则的此类系统。我们的原理将学习作为一个最不控制的问题,我们首先引入一个最佳控制器,以将系统带入解决方案状态,然后将学习定义为减少达到这种状态所需的控制量。我们表明,将学习信号纳入动力学作为最佳控制可以以先前未知的方式传输信用分配信息,避免将中间状态存储在内存中,并且不依赖无穷小的学习信号。在实践中,我们的原理可以使基于梯度的学习方法的强大绩效匹配,该方法应用于涉及复发性神经网络和元学习的一系列问题。我们的结果阐明了大脑如何学习并提供解决广泛的机器学习问题的新方法。
translated by 谷歌翻译
This chapter sheds light on the synaptic organization of the brain from the perspective of computational neuroscience. It provides an introductory overview on how to account for empirical data in mathematical models, implement them in software, and perform simulations reflecting experiments. This path is demonstrated with respect to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic transmission, synaptic plasticity, and the heterogeneity across synapses. Each step and aspect of the modeling and simulation workflow comes with its own challenges and pitfalls, which are highlighted and addressed in detail.
translated by 谷歌翻译
具有复发性不对称耦合的神经网络对于了解如何在大脑中编码情节记忆很重要。在这里,我们将广泛的突触整合窗口的实验性观察整合到连续时间动力学中的序列检索模型中。理论上通过得出神经动力学中的雅可比矩阵的随机基质理论来研究具有非正态神经元相互作用的模型。这些光谱具有几个不同的特征,例如围绕原点的旋转对称性以及光谱边界内嵌套空隙的出现。因此,光谱密度高度不均匀地分布在复杂平面中。随机矩阵理论还可以预测过渡到混乱。特别是,混乱的边缘为记忆的顺序检索提供了计算益处。我们的工作提供了与任意时间延迟的时间隔离相关性的系统研究,因此可以激发对广泛记忆模型的未来研究,甚至可以激发生物学时间序列的大数据分析。
translated by 谷歌翻译
我们训练神经形态硬件芯片以通过变分能最小化近似Quantum旋转模型的地面状态。与使用马尔可夫链蒙特卡罗进行样品生成的变分人工神经网络相比,这种方法具有优点:神经形态器件以快速和固有的并行方式产生样品。我们开发培训算法,并将其应用于横向场介绍模型,在中等系统尺寸下显示出良好的性能($ n \ LEQ 10 $)。系统的普遍开心研究表明,较大系统尺寸的可扩展性主要取决于样品质量,该样品质量受到模拟神经芯片上的参数漂移的限制。学习性能显示阈值行为作为ansatz的变分参数的数量的函数,大约为50美元的隐藏神经元,足以表示关键地位,最高$ n = 10 $。网络参数的6 + 1位分辨率不会限制当前设置中的可达近似质量。我们的工作为利用神经形态硬件的能力提供了一种重要的一步,以解决量子数量问题中的维数诅咒。
translated by 谷歌翻译
众所周知,HEBB的学习探索了帕夫洛夫的古典条件,而前者在过去几十年中进行了广泛的建模(例如,通过Hopfield模型和无数的主题变化),因为后者的建模在很大程度上保持了很大的含糊状态。远的;此外,完全缺乏这两个支柱之间的桥梁。实现该目标的主要困难置于所涉及的信息的本质上不同的范围:帕夫洛夫的理论是关于\ emph {concepts}之间的相关性(动态地)存储在突触矩阵中,这是由狗和一个戒指主演的著名实验所体现的钟;相反,HEBB的理论是关于相邻神经元对之间的相关性,如著名的陈述{\ em神经元一起发射汇合的}所总结。在本文中,我们依靠随机过程理论以及通过langevin方程进行神经和突触动力学模型,以证明 - 只要我们保持神经元和突触的时间表的大量分裂,Pavlov机制就会自发地发生并最终产生至恢复Hebbian内核的突触重量。
translated by 谷歌翻译
Synaptic plasticity allows cortical circuits to learn new tasks and to adapt to changing environments. How do cortical circuits use plasticity to acquire functions such as decision-making or working memory? Neurons are connected in complex ways, forming recurrent neural networks, and learning modifies the strength of their connections. Moreover, neurons communicate emitting brief discrete electric signals. Here we describe how to train recurrent neural networks in tasks like those used to train animals in neuroscience laboratories, and how computations emerge in the trained networks. Surprisingly, artificial networks and real brains can use similar computational strategies.
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译
Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of powerful, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if and how they could be mapped onto neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide a comprehensive overview of representative brain-inspired synaptic plasticity models and mixed-signal CMOS neuromorphic circuits within a unified framework. We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and post-synaptic neuron information, which we propose as a fundamental requirement for physical implementations of synaptic plasticity. Based on this principle, we compare the properties of these models within the same framework, and describe the mixed-signal electronic circuits that implement their computing primitives, pointing out how these building blocks enable efficient on-chip and online learning in neuromorphic processing systems.
translated by 谷歌翻译
Hopfield attractor networks are robust distributed models of human memory. We propose construction rules such that an attractor network may implement an arbitrary finite state machine (FSM), where states and stimuli are represented by high-dimensional random bipolar vectors, and all state transitions are enacted by the attractor network's dynamics. Numerical simulations show the capacity of the model, in terms of the maximum size of implementable FSM, to be linear in the size of the attractor network. We show that the model is robust to imprecise and noisy weights, and so a prime candidate for implementation with high-density but unreliable devices. By endowing attractor networks with the ability to emulate arbitrary FSMs, we propose a plausible path by which FSMs may exist as a distributed computational primitive in biological neural networks.
translated by 谷歌翻译
Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We
translated by 谷歌翻译
我们考虑受限制的Boltzmann机器(RBMS)在非结构化的数据集上培训,由虚构的数据集进行,该数据集由明确的模糊但不可用的“原型”,我们表明,RBM可以学习原型的临界样本大小,即机器可以成功播放作为一种生成模型或作为分类器,根据操作程序。通常,评估关键的样本大小(可能与数据集的质量相关)仍然是机器学习中的一个开放问题。在这里,限制随机理论,其中浅网络就足够了,大母细胞场景是正确的,我们利用RBM和Hopfield网络之间的正式等价,以获得突出区域中突出区域的神经架构的相图控制参数(即,原型的数量,训练集的训练集的神经元数量,大小和质量的数量),其中可以实现学习。我们的调查是通过基于无序系统的统计学机械的分析方法领导的,结果通过广泛的蒙特卡罗模拟进一步证实。
translated by 谷歌翻译
大脑通过其复杂的尖峰网络的网络有效地执行非线性计算,但这是如何难以捉摸的。虽然可以在尖峰神经网络中成功实现非线性计算,但这需要监督培训,并且产生的连接可能很难解释。相反,可以用尖峰编码网络(SCN)框架直接导出和理解线性动力系统形式的任何计算的所需连通性。这些网络还具有生物学上的现实活动模式,对细胞死亡具有高度稳健的。在这里,我们将SCN框架扩展到直接实施任何多项式动态系统,而无需培训。这导致需要混合突触类型(快速,慢,乘法)的网络,我们术语乘以乘法峰值编码网络(MSCN)。使用MSCN,我们演示了如何直接导出几个非线性动态系统所需的连通性。我们还展示了如何执行高阶多项式,其中耦合网络仅使用配对乘法突触,并为每个突触类型提供预期的连接数。总体而言,我们的作品展示了一种新的用于在尖峰神经网络中实现非线性计算的新方法,同时保持标准SCNS(鲁棒性,现实活动模式和可解释连接)的吸引力特征。最后,我们讨论了我们方法的生物合理性,以及这种方法的高准确度和鲁棒性如何对神经形态计算感兴趣。
translated by 谷歌翻译
经常性神经网络(RNN)经常用于建模脑功能和结构的方面。在这项工作中,我们培训了小型完全连接的RNN,以具有时变刺激的时间和流量控制任务。我们的结果表明,不同的RNN可以通过对不同的底层动态进行不同的RNN来解决相同的任务,并且优雅地降低的性能随着网络尺寸而降低,间隔持续时间增加,或者连接损坏。我们的结果对于量化通常用作黑匣子的模型的不同方面是有用的,并且需要预先理解以建模脑皮质区域的生物反应。
translated by 谷歌翻译
短期可塑性(STP)是一种将腐烂记忆存储在大脑皮质突触中的机制。在计算实践中,已经使用了STP,但主要是在尖峰神经元的细分市场中,尽管理论预测它是对某些动态任务的最佳解决方案。在这里,我们提出了一种新型的经常性神经单元,即STP神经元(STPN),它确实实现了惊人的功能。它的关键机制是,突触具有一个状态,通过与偶然性的自我连接在时间上传播。该公式使能够通过时间返回传播来训练可塑性,从而导致一种学习在短期内学习和忘记的形式。 STPN的表现优于所有测试的替代方案,即RNN,LSTMS,其他具有快速重量和可区分可塑性的型号。我们在监督和强化学习(RL)以及协会​​检索,迷宫探索,Atari视频游戏和Mujoco Robotics等任务中证实了这一点。此外,我们计算出,在神经形态或生物电路中,STPN最大程度地减少了模型的能量消耗,因为它会动态降低个体突触。基于这些,生物学STP可能是一种强大的进化吸引子,可最大程度地提高效率和计算能力。现在,STPN将这些神经形态的优势带入了广泛的机器学习实践。代码可从https://github.com/neuromorphiccomputing/stpn获得
translated by 谷歌翻译
The spectacular successes of recurrent neural network models where key parameters are adjusted via backpropagation-based gradient descent have inspired much thought as to how biological neuronal networks might solve the corresponding synaptic credit assignment problem. There is so far little agreement, however, as to how biological networks could implement the necessary backpropagation through time, given widely recognized constraints of biological synaptic network signaling architectures. Here, we propose that extra-synaptic diffusion of local neuromodulators such as neuropeptides may afford an effective mode of backpropagation lying within the bounds of biological plausibility. Going beyond existing temporal truncation-based gradient approximations, our approximate gradient-based update rule, ModProp, propagates credit information through arbitrary time steps. ModProp suggests that modulatory signals can act on receiving cells by convolving their eligibility traces via causal, time-invariant and synapse-type-specific filter taps. Our mathematical analysis of ModProp learning, together with simulation results on benchmark temporal tasks, demonstrate the advantage of ModProp over existing biologically-plausible temporal credit assignment rules. These results suggest a potential neuronal mechanism for signaling credit information related to recurrent interactions over a longer time horizon. Finally, we derive an in-silico implementation of ModProp that could serve as a low-complexity and causal alternative to backpropagation through time.
translated by 谷歌翻译
在存在白噪声的情况下,在各个科学领域,在存在白噪声的情况下逃脱吸引盆地的平均退出时间至关重要。在这项工作中,我们提出了一种策略,以控制一般随机动力学系统的平均退出时间,以基于准潜电概念和机器学习实现所需的价值。具体而言,我们开发了一个神经网络体系结构来计算全局准次电位函数。然后,我们设计了一种系统的迭代数值算法来计算给定平均退出时间的控制器。此外,我们在有效的汉密尔顿 - 雅各比计划和受过训练的神经网络的帮助下确定了亚稳态吸引子之间的最可能路径。数值实验表明,我们的控制策略是有效且足够准确的。
translated by 谷歌翻译
这篇理论文章研究了如何在计算机中构建类似人类的工作记忆和思维过程。应该有两个工作记忆存储,一个类似于关联皮层中的持续点火,另一个类似于大脑皮层中的突触增强。这些商店必须通过环境刺激或内部处理产生的新表示不断更新。它们应该连续更新,并以一种迭代的方式进行更新,这意味着在下一个状态下,应始终保留一组共同工作中的某些项目。因此,工作记忆中的一组概念将随着时间的推移逐渐发展。这使每个状态都是对先前状态的修订版,并导致连续的状态与它们所包含的一系列表示形式重叠和融合。随着添加新表示形式并减去旧表示形式,在这些更改过程中,有些保持活跃几秒钟。这种持续活动,类似于人工复发性神经网络中使用的活动,用于在整个全球工作区中传播激活能量,以搜索下一个关联更新。结果是能够朝着解决方案或目标前进的联想连接的中间状态链。迭代更新在这里概念化为信息处理策略,一种思想流的计算和神经生理决定因素以及用于设计和编程人工智能的算法。
translated by 谷歌翻译
基于旋转扭矩振荡器的复合值Hopfield网络模拟可以恢复相位编码的图像。存储器增强逆变器的序列提供可调谐延迟元件,通过相位转换振荡器的振荡输出来实现复合权重的可调延迟元件。伪逆培训足以存储在一组192个振荡器中,至少代表16 $ \倍数为12个像素图像。恢复图像所需的能量取决于所需的错误级别。对于这里考虑的振荡器和电路,来自理想图像的5%均方方偏差需要大约5 00美元$ S并消耗大约130 NJ。模拟显示,当振荡器的谐振频率可以调整为具有小于10 ^ {-3} $的分数扩展时,网络功能良好,具体取决于反馈的强度。
translated by 谷歌翻译
深度学习的成功激发了人们对大脑是否使用基于梯度的学习来学习层次结构表示的兴趣。但是,目前在深层神经网络中基于梯度的信用分配的生物学上合理的方法需要无限的小反馈信号,这在生物学上现实的嘈杂环境中是有问题的,并且与神经科学的实验证据不符,表明自上而下的反馈可以显着影响神经活动。在最近提出的一种信用分配方法的深度反馈控制(DFC)的基础上,我们结合了对神经活动的强烈反馈影响与基​​于梯度的学习,并表明这自然会导致对神经网络优化的新看法。权重更新并没有逐渐将网络权重转换为具有低输出损失的配置,而是逐渐最大程度地减少了将网络驱动到监督输出标签的控制器所需的反馈量。此外,我们表明,在DFC中使用强反馈的使用允许同时学习和反馈连接,并在时空中完全本地学习规则。我们通过对标准计算机视觉基准测试的实验来补充我们的理论结果,显示了反向传播的竞争性能以及对噪声的鲁棒性。总体而言,我们的工作提出了一种从根本上新颖的学习视图,作为控制最小化,同时避开了生物学上不切实际的假设。
translated by 谷歌翻译