在存在白噪声的情况下,在各个科学领域,在存在白噪声的情况下逃脱吸引盆地的平均退出时间至关重要。在这项工作中,我们提出了一种策略,以控制一般随机动力学系统的平均退出时间,以基于准潜电概念和机器学习实现所需的价值。具体而言,我们开发了一个神经网络体系结构来计算全局准次电位函数。然后,我们设计了一种系统的迭代数值算法来计算给定平均退出时间的控制器。此外,我们在有效的汉密尔顿 - 雅各比计划和受过训练的神经网络的帮助下确定了亚稳态吸引子之间的最可能路径。数值实验表明,我们的控制策略是有效且足够准确的。
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译
本文介绍了使用LangeVin方法的市场回报的非线性动态的易嬗变模型。由于相互作用潜力的非线性,模型承认小型和大返回波动的制度。 Langevin Dynamics映射到等效量子机械(QM)系统上。从超对称量子力学(SUSY QM)的借用思路,该QM系统的参数化地态波函数(WF)用作模型的直接输入,也可以解决非线性Langevin电位。使用双组分高斯混合物作为具有非对称双阱潜力的地态WF,产生具有可解释参数的易解的低参数模型,称为NES(非平衡偏斜)模型。然后使用基于对称的方式以分析易行的方式查找模型的时间依赖性解。附加近似值引起了NES模型的最终实际版本,其中实际测量和风险中性返回分布由三个组件高斯混合给出。这在NES模型中,通过三个黑人价格的混合产生了封闭形式的近似,以便为良性或良好的市场环境的选择价格提供准确的校准,同时仅使用单个波动性参数。这些结果与诸如局部,随机或粗糙的波动模型等大多数其他选项定价模型的鲜明对比,需要更复杂的噪声规格来适应市场数据。
translated by 谷歌翻译
In my previous article I mentioned for the first time that a classical neural network may have quantum properties as its own structure may be entangled. The question one may ask now is whether such a quantum property can be used to entangle other systems? The answer should be yes, as shown in what follows.
translated by 谷歌翻译
我们在强烈混合(混乱)方面基于能源持续的哈密顿动力学进行了优化的新框架,并在分析和数值上建立其关键特性。该原型是对出生式动力学的离散化,取决于目标函数,其平方相对速度限制。这类无摩擦,节能优化器毫不动摇地进行,直到自然放慢速度在最小的损失附近,这主要是系统的相位空间体积。我们从对动力台球等混乱系统的研究构建,我们制定了一种特定的算法,在机器学习和解决PDE解决任务(包括概括)方面具有良好的性能。它不能以高的局部最低限度停止,这是非凸损失功能的优势,并且比浅谷中的GD+动量更快。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们介绍了一个名为统计信息的神经网络(SINN)的机器学习框架,用于从数据中学习随机动力学。从理论上讲,这种新的架构是受到随机系统的通用近似定理的启发,我们在本文中介绍了它,以及用于随机建模的投影手术形式。我们设计了训练神经网络模型的机制,以重现目标随机过程的正确\ emph {统计}行为。数值模拟结果表明,受过良好训练的SINN可以可靠地近似马尔可夫和非马克维亚随机动力学。我们证明了SINN对粗粒问题和过渡动力学的建模的适用性。此外,我们表明可以在时间粗粒的数据上训练所获得的减少阶模型,因此非常适合稀有事实模拟。
translated by 谷歌翻译
我们通过投影仪操作员研究较大尺寸的连续动态系统的嵌入。我们称这种技术PED,动态系统的投影嵌入,因为动态的稳定固定点通过从较高尺寸空间的投影回收。在本文中,我们提供了一种通用定义,并证明对于特定类型的Rank-1的投影仪操作者,均匀的平均场投影仪,运动方程成为动态系统的平均场逼近。虽然一般来说,嵌入取决于指定的变量排序,但对于均匀平均字段投影仪而不是真的。此外,我们证明原始稳定的固定点保持稳定的动态的定点,鞍点保持鞍座,但不稳定的固定点变成马鞍。
translated by 谷歌翻译
如今,神经网络广泛用于许多应用中,作为人工智能模型,用于学习任务。由于通常神经网络处理非常大量的数据,因此在平均场和动力学理论内方便地制定它们。在这项工作中,我们专注于特定类别的神经网络,即残余神经网络,假设每层的特征是相同数量的神经元数量$ N $,这是由数据的维度固定的。这种假设允许将残余神经网络作为时间离散化的常微分方程解释,与神经微分方程类似。然后在无限的许多输入数据的极限中获得平均场描述。这导致VLASOV型部分微分方程描述了输入数据分布的演变。我们分析了网络参数的稳态和灵敏度,即重量和偏置。在线性激活功能和一维输入数据的简单设置中,矩的研究为网络的参数选择提供了见解。此外,通过随机残留神经网络的启发的微观动态的修改导致网络的Fokker-Planck配方,其中网络训练的概念被拟合分布的任务所取代。通过人工数值模拟验证所执行的分析。特别是,提出了对分类和回归问题的结果。
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
具有复发性不对称耦合的神经网络对于了解如何在大脑中编码情节记忆很重要。在这里,我们将广泛的突触整合窗口的实验性观察整合到连续时间动力学中的序列检索模型中。理论上通过得出神经动力学中的雅可比矩阵的随机基质理论来研究具有非正态神经元相互作用的模型。这些光谱具有几个不同的特征,例如围绕原点的旋转对称性以及光谱边界内嵌套空隙的出现。因此,光谱密度高度不均匀地分布在复杂平面中。随机矩阵理论还可以预测过渡到混乱。特别是,混乱的边缘为记忆的顺序检索提供了计算益处。我们的工作提供了与任意时间延迟的时间隔离相关性的系统研究,因此可以激发对广泛记忆模型的未来研究,甚至可以激发生物学时间序列的大数据分析。
translated by 谷歌翻译
最近,对具有神经网络的物理系统建模和计算的兴趣越来越多。在古典力学中,哈密顿系统是一种优雅而紧凑的形式主义,该动力学由一个标量功能,哈密顿量完全决定。解决方案轨迹通常受到约束,以在线性矢量空间的子序列上进化。在这项工作中,我们提出了新的方法,以准确地逼近其解决方案的示例数据信息的约束机械系统的哈密顿功能。我们通过使用明确的谎言组集成商和其他经典方案来关注学习策略中约束的重要性。
translated by 谷歌翻译
Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We
translated by 谷歌翻译
最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译