颠倒地震数据以建立3D地质结构是一项艰巨的任务,这是由于大量获得的地震数据,以及由于波动方程的迭代数值解决方案而引起的最高计算负载,如行业标准的工具所要求的,例如Full WaveForm反转(FWI)。例如,在3.5公里$ \ $ 4.5公里的地面尺寸的区域中,3D模型重建需要数百个地震射击场立方体,从而导致记录数据的Terabytes。本文提出了一种深度学习解决方案,用于在地震调查中记录的田间噪声的情况下重建现实的3D模型。我们实施和分析了一个卷积编码器架构,该体系结构有效地处理了数百种地震收集立方体的整个集合。所提出的解决方案表明,在存在10dB信噪比的场噪声的情况下,可以以结构相似性指数度量(SSIM)为0.8554(在1.0中)重建现实的3D模型。
translated by 谷歌翻译
我们展示了OpenFWI,是用于地震全波形反演(FWI)的大型开源基准数据集的集合。OpenFWI是地球科学和机器学习界的一流,以促进对基于机器学习的FWI多元化,严谨和可重复的研究。OpenFWI包括多个尺度的数据集,包含不同的域,涵盖各种级别的模型复杂性。除了数据集之外,我们还对每个数据集进行实证研究,具有完全卷积的深度学习模型。OpenFWI已被核心维护,并将通过新数据和实验结果定期更新。我们感谢社区的投入,帮助我们进一步改进OpenFWI。在当前版本,我们在OpenFWI中发布了七个数据集,其中为3D FWI指定了一个,其余的是2D场景。所有数据集和相关信息都可以通过我们的网站访问https://openfwi.github.io/。
translated by 谷歌翻译
地震数据处理在很大程度上取决于物理驱动的反问题的解决方案。在存在不利的数据采集条件下(例如,源和/或接收器的规则或不规则的粗略采样),基本的反问题变得非常不适,需要先进的信息才能获得令人满意的解决方案。刺激性反演,再加上固定基础的稀疏转换,代表了许多处理任务的首选方法,因为其实施简单性并在各种采集方案中都成功地应用了成功应用。利用深神经网络找到复杂的多维矢量空间的紧凑表示的能力,我们建议训练自动编码器网络,以了解输入地震数据和代表性潜流歧管之间的直接映射。随后,训练有素的解码器被用作手头物理驱动的逆问题的非线性预处理。提供了各种地震处理任务的合成数据和现场数据,并且所提出的非线性,学习的转换被证明超过了固定基本的转换,并更快地收敛到所寻求的解决方案。
translated by 谷歌翻译
在对地下地震成像的研究中,求解声波方程是现有模型中的关键成分。随着深度学习的发展,神经网络通过学习输入和方程解决方案之间的映射,特别是波动方程式,将神经网络应用于数值求解部分微分方程,因为如果要花很多时间,传统方法可能会很耗时解决了。以前专注于通过神经网络解决波动方程的工作考虑单个速度模型或多个简单速度模型,这在实践中受到限制。因此,受操作员学习的构想的启发,这项工作利用了傅立叶神经操作员(FNO)在可变速度模型的背景下有效地学习频域地震波场。此外,我们提出了一个与傅立叶神经操作员(PFNO)并行的新框架,以有效地训练基于FNO的求解器,给定多个源位置和频率。数值实验证明了OpenFWI数据集中使用复杂速度模型的FNO和PFNO的高精度。此外,跨数据集泛化测试验证了PFNO适应过分速度模型的。同样,在标签中存在随机噪声的情况下,PFNO具有强大的性能。最后,与传统的有限差异方法相比,PFNO在大规模测试数据集上接受了更高的计算效率。上述优势赋予了基于FNO的求解器的潜力,可以为地震波研究建立强大的模型。
translated by 谷歌翻译
Monitoring changes inside a reservoir in real time is crucial for the success of CO2 injection and long-term storage. Machine learning (ML) is well-suited for real-time CO2 monitoring because of its computational efficiency. However, most existing applications of ML yield only one prediction (i.e., the expectation) for a given input, which may not properly reflect the distribution of the testing data, if it has a shift with respect to that of the training data. The Simultaneous Quantile Regression (SQR) method can estimate the entire conditional distribution of the target variable of a neural network via pinball loss. Here, we incorporate this technique into seismic inversion for purposes of CO2 monitoring. The uncertainty map is then calculated pixel by pixel from a particular prediction interval around the median. We also propose a novel data-augmentation method by sampling the uncertainty to further improve prediction accuracy. The developed methodology is tested on synthetic Kimberlina data, which are created by the Department of Energy and based on a CO2 capture and sequestration (CCS) project in California. The results prove that the proposed network can estimate the subsurface velocity rapidly and with sufficient resolution. Furthermore, the computed uncertainty quantifies the prediction accuracy. The method remains robust even if the testing data are distorted due to problems in the field data acquisition. Another test demonstrates the effectiveness of the developed data-augmentation method in increasing the spatial resolution of the estimated velocity field and in reducing the prediction error.
translated by 谷歌翻译
本文介绍了频率卷积神经网络(CNN),用于快速,无创的​​2D剪切波速度(VS)成像的近表面地质材料。在频速度域中运行,可以在用于生成CNN输入的线性阵列,主动源实验测试配置中具有显着的灵活性,这些配置是归一化的分散图像。与波场图像不同,标准化的分散图像对实验测试配置相对不敏感,可容纳各种源类型,源偏移,接收器数量和接收器间距。我们通过将其应用于经典的近乎表面地球物理学问题,即成像两层,起伏的土壤 - 旁质界面的界面来证明频率CNN的有效性。最近,通过开发一个时间距离CNN来研究这个问题,该问题表现出了很大的希望,但在使用不同的现场测试配置方面缺乏灵活性。本文中,新的频道CNN显示出与时距CNN的可比精度,同时提供了更大的灵活性来处理各种现场应用程序。使用100,000个合成近表面模型对频率速度CNN进行了训练,验证和测试。首先,使用训练集的合成近表面模型测试了提议的频率CNN跨各种采集配置概括跨各种采集配置的能力,然后应用于在Austin的Hornsby Bend在Austin的Hornsby Bend收集的实验场数据美国德克萨斯州,美国。当针对更广泛的地质条件范围充分开发时,提出的CNN最终可以用作当前伪2D表面波成像技术的快速,端到端替代方案,或开发用于完整波形倒置的启动模型。
translated by 谷歌翻译
全波形反演(FWI)通常代表成像地下结构和物理参数的最新方法,但是,其实施通常面临着巨大的挑战,例如建立一个良好的初始模型以逃脱本地的最小值,并评估评估反转结果的不确定性。在本文中,我们建议使用连续和隐式定义的深神经表示形式提出隐式全波形反演(IFWI)算法。与对初始模型敏感的FWI相比,IFWI从增加的自由度中受益于深度学习优化,从而可以从随机初始化开始,从而大大降低了非唯一性的风险,并被当地的微型捕获。理论分析和实验分析都表明,在随机初始模型的情况下,IFWI能够收敛到全局最小值并产生具有精细结构的地下的高分辨率图像。此外,通过使用各种深度学习方法近似贝叶斯推断,可以轻松地对IFWI进行不确定性分析,这在本文中通过添加辍学神经元进行了分析。此外,IFWI具有一定程度的鲁棒性和强大的概括能力,在各种2D地质模型的实验中被例证。通过适当的设置,IFWI也可以非常适合多规模关节地球物理反演。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
数据驱动方法已被证明是解决复杂科学问题的有希望的技术。全波形反转(FWI)通常被阐述为图像到图像转换任务,这激励了深度神经网络作为端到端解决方案的使用。尽管采用了合成数据培训,但在用足够的真实数据评估时,深度学习驱动的FWI预计将表现良好。在本文中,我们通过询问研究此类属性:这些深度神经网络的强大是如何发展以及它们如何概括?对于稳健性,我们证明了从清洁和嘈杂数据之间预测之间的偏差的上限。此外,我们展示了噪声水平与额外损失增益之间的相互作用。对于泛化,我们通过稳定性泛化框架证明了基于常规的泛化误差。地震FWI数据集与理论结果的实验​​结果,揭示了利用深度学习对复杂的科学应用的影响。
translated by 谷歌翻译
反转技术被广泛用于重建基于表面的地球物理测量值(例如,地震,电气/磁(EM)数据)的地下物理特性(例如,速度,电导率)。这些问题受波浪或麦克斯韦方程等部分微分方程(PDE)的控制。解决地球物理反演问题由于不适当和高计算成本而具有挑战性。为了减轻这些问题,最近的研究利用深层神经网络来学习从测量到物业的倒置映射。在本文中,我们表明,这样的映射可以通过仅有五层的非常浅(但不是宽)网络来很好地建模。这是基于我们对有趣属性的新发现来实现的:在高维空间中应用积分变换后,输入和输出之间的近乎线性关系。特别是,在处理由波方程控制的从地震数据到地下速度的反演时,与高斯核的速度的积分结果与正弦核的地震数据的积分线性相关。此外,该属性可以轻松地转变为用于反转的轻质编码器网络。编码器包含地震数据和线性转换的整合,而无需进行微调。解码器仅由一个单个变压器块组成,以逆转速度的积分。实验表明,这种有趣的属性可用于四个不同数据集的两个地球物理倒置问题。与更深的倒置网络相比,我们的方法达到了可比的精度,但消耗的参数大大减少。
translated by 谷歌翻译
过去的十年见证了深度学习在各种计算成像,传感和显微镜任务中的变革性应用。由于采用了有监督的学习方案,因此大多数方法取决于大规模,多样化和标记的培训数据。此类培训图像数据集的获取和准备通常很费力且昂贵,也导致对新样本类型的估计和概括有限。在这里,我们报告了一种称为Gedankennet的自制学习模型,该模型消除了对标签或实验培训数据的需求,并证明了其对全息图重建任务的有效性和卓越的概括。如果没有关于要成像的样本类型的先验知识,则使用物理矛盾的丢失和人为的随机图像进行了培训,这些模型是合成生成的,没有任何实验或与现实世界样本的相似之处。在其自制训练之后,Gedankennet成功概括为各种看不见的生物样品的实验全息图,并使用实验获得的测试全息图重建了不同类型对象的相位和振幅图像。 Gedankennet的自我监督学习实现了与Maxwell的方程相一致的复杂图像重建,无需访问实验数据或知识的真实样本或其空间特征的知识,就意味着其输出推理和对象解决方案准确地表示波传播,这实现了复杂的图像重建。在自由空间中。对图像重建任务的自我监督学习为全息,显微镜和计算成像领域的各种反问题打开了新的机会。
translated by 谷歌翻译
求解电磁逆散射问题(ISP)由于内在的非线性,呈不良和昂贵的计算成本,挑战。最近,深神经网络(DNN)技术已经成功地应用于ISP上,并在传统方法上示出了优异成像的电位。在本文中,我们分析了DNN溶剂和传统迭代算法之间的类比,并讨论了在训练过程中不能有效地纳入重要的物理现象。我们展示了在DNN的学习过程中包括近端前瞻的重要性。为此,我们提出了新的损耗功能设计,其包括基于多散射的近场数量(例如散射场或感兴趣领域内的诱导电流)。使用各种数值实验研究了物理引导功能的影响。总结了调查的ISP求解器的利弊,综述了不同损失功能。
translated by 谷歌翻译
Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We propose to use migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a Convolutional Neural Network (CNN). Our approach relies on subsurface Common Image Gathers to focus the sediments' reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we trained a U-Net to use common-offset subsurface images as input channels for the CNN and the correct salt-masks as network output. The network learned to predict the salt inclusions masks with high accuracy; moreover, it also performed well when applied to synthetic benchmark data sets that were not previously introduced. Our training process tuned the U-Net to successfully learn the shape of complex salt bodies from partially focused subsurface offset images.
translated by 谷歌翻译
逆源问题对于声学,地球物理学,非破坏性测试等的许多应用是至关重要的。传统成像方法受到分辨率极限的影响,防止源的区别比发射的波长小于发射的波长。在这项工作中,我们提出了一种基于物理信息的神经网络来解决源重新关注问题的方法,构建了一个新颖的损失项,该损失术语促进了网络的超解决能力,并基于波传播的物理。我们证明了在二维矩形波导中通过沿垂直横截面的波场记录的测量值进行成像的设置中的方法。结果表明,即使将彼此靠近时,该方法的能力也可以高精度近似于源的位置。
translated by 谷歌翻译
直接定位(DLOC)方法,该方法使用观察到的数据将源定位在一步过程中的未知位置,通常优于其间接的两步对应物(例如,使用到达的时间差异)。但是,水下声学DLOC方法需要对环境的先验知识,并且计算昂贵,因此很慢。我们建议,据我们所知,这是第一个数据驱动的DLOC方法。受经典和现代最佳模型的DLOC解决方案的启发,并利用了卷积神经网络(CNN)的功能,我们设计了一个基于CNN的整体解决方案。我们的方法包括专门量身定制的输入结构,体系结构,损失功能和渐进培训程序,在更广泛的机器学习背景下具有独立的兴趣。我们证明我们的方法优于有吸引力的替代方案,并且渐近地与基于Oracle的最佳模型解决方案的性能匹配。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
Tomographic SAR technique has attracted remarkable interest for its ability of three-dimensional resolving along the elevation direction via a stack of SAR images collected from different cross-track angles. The emerged compressed sensing (CS)-based algorithms have been introduced into TomoSAR considering its super-resolution ability with limited samples. However, the conventional CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity, and complex parameter fine-tuning. Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA) architecture with adaptive threshold, named Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem, leaving only two scalar parameters to be learned from data, which significantly simplifies the training stage. In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise. Moreover, the final learned thresholds can be visualized and combined with the SAR image semantics for mutual feedback. Finally, extensive experiments on simulated and real data are carried out to demonstrate the effectiveness and efficiency of the proposed method.
translated by 谷歌翻译
深度学习(DL)反转是用于实时解释测井的有希望的方法,同时钻井(LWD)电阻率测量井进行井导航应用。在这种情况下,测量噪声可以显着影响反转结果。检查测量噪声对DL反演结果的影响的现有出版物是稀缺的。我们开发一种生成培训数据集的方法,并构建DL架构,可以在存在嘈杂的LWD电阻率测量时增强DL反转方法的鲁棒性。我们使用两个合成电阻率模型来测试三种方法,明确地考虑噪声的存在:(1)将噪声添加到训练集中的测量中,(2)通过复制它并添加不同的噪声实现来增强训练集,并添加不同的噪声实现,以及(3 )在DL架构中添加噪声层。数值结果证实,这三种方法产生了去噪效果,不仅可以对基本的DL反转而比较的预测地球模型和测量结果的更好的反演,而且产生了更好的反演,而且还产生了传统基于梯度的反转结果。第二种和第三种方法的组合提供了最佳结果。所提出的方法可以容易地广泛地推广到多维DL反转。
translated by 谷歌翻译
在本文中,我们考虑使用Palentir在两个和三个维度中对分段常数对象的恢复和重建,这是相对于当前最新ART的显着增强的参数级别集(PALS)模型。本文的主要贡献是一种新的PALS公式,它仅需要一个单个级别的函数来恢复具有具有多个未知对比度的分段常数对象的场景。我们的模型比当前的多对抗性,多对象问题提供了明显的优势,所有这些问题都需要多个级别集并明确估计对比度大小。给定对比度上的上限和下限,我们的方法能够以任何对比度分布恢复对象,并消除需要知道给定场景中的对比度或其值的需求。我们提供了一个迭代过程,以找到这些空间变化的对比度限制。相对于使用径向基函数(RBF)的大多数PAL方法,我们的模型利用了非异型基函数,从而扩展了给定复杂性的PAL模型可以近似的形状类别。最后,Palentir改善了作为参数识别过程一部分所需的Jacobian矩阵的条件,因此通过控制PALS扩展系数的幅度来加速优化方法,固定基本函数的中心,以及参数映射到图像映射的唯一性,由新参数化提供。我们使用X射线计算机断层扫描,弥漫性光学断层扫描(DOT),Denoising,DeonConvolution问题的2D和3D变体证明了新方法的性能。应用于实验性稀疏CT数据和具有不同类型噪声的模拟数据,以进一步验证所提出的方法。
translated by 谷歌翻译
深度学习(DL),尤其是深神经网络(DNN),默认情况下纯粹是数据驱动的,通常不需要物理。这是DL的优势,但在应用于科学和工程问题时,它的主要局限性之一就是必不可少的物理特性和所需的准确性。其原始形式的DL方法也无法尊重基本的数学模型或即使在大数据制度中也可以达到所需的准确性。但是,许多数据驱动的科学和工程问题(例如反问题)通常具有有限的实验或观察数据,而在这种情况下,DL会过分拟合数据。我们认为,利用基础数学模型中编码的信息,不仅可以补偿低数据制度中缺少的信息,而且还提供了将DL方法与基础物理学配备的机会,从而促进了更好的概括。本文开发了一种模型受限的深度学习方法及其变体TNET,该方法能够学习隐藏在培训数据和基础数学模型中的信息,以解决由部分微分方程控制的反问题。我们为提出的方法提供了构造和一些理论结果。我们表明,数据随机化可以增强网络的平滑度及其概括。全面的数值结果不仅确认了理论发现,而且还表明,即使仅20个训练数据样本,一维卷积的训练数据样本,50次反向2D热电导率问题,100和50对于时间依赖的2D汉堡方程和逆初始条件和50 2D Navier-Stokes方程。 TNET溶液可以像Tikhonov溶液一样准确,同时几个数量级。由于模型受限项,复制和随机化,这可能是可能的。
translated by 谷歌翻译