本文介绍了频率卷积神经网络(CNN),用于快速,无创的​​2D剪切波速度(VS)成像的近表面地质材料。在频速度域中运行,可以在用于生成CNN输入的线性阵列,主动源实验测试配置中具有显着的灵活性,这些配置是归一化的分散图像。与波场图像不同,标准化的分散图像对实验测试配置相对不敏感,可容纳各种源类型,源偏移,接收器数量和接收器间距。我们通过将其应用于经典的近乎表面地球物理学问题,即成像两层,起伏的土壤 - 旁质界面的界面来证明频率CNN的有效性。最近,通过开发一个时间距离CNN来研究这个问题,该问题表现出了很大的希望,但在使用不同的现场测试配置方面缺乏灵活性。本文中,新的频道CNN显示出与时距CNN的可比精度,同时提供了更大的灵活性来处理各种现场应用程序。使用100,000个合成近表面模型对频率速度CNN进行了训练,验证和测试。首先,使用训练集的合成近表面模型测试了提议的频率CNN跨各种采集配置概括跨各种采集配置的能力,然后应用于在Austin的Hornsby Bend在Austin的Hornsby Bend收集的实验场数据美国德克萨斯州,美国。当针对更广泛的地质条件范围充分开发时,提出的CNN最终可以用作当前伪2D表面波成像技术的快速,端到端替代方案,或开发用于完整波形倒置的启动模型。
translated by 谷歌翻译
Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We propose to use migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a Convolutional Neural Network (CNN). Our approach relies on subsurface Common Image Gathers to focus the sediments' reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we trained a U-Net to use common-offset subsurface images as input channels for the CNN and the correct salt-masks as network output. The network learned to predict the salt inclusions masks with high accuracy; moreover, it also performed well when applied to synthetic benchmark data sets that were not previously introduced. Our training process tuned the U-Net to successfully learn the shape of complex salt bodies from partially focused subsurface offset images.
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
我们展示了OpenFWI,是用于地震全波形反演(FWI)的大型开源基准数据集的集合。OpenFWI是地球科学和机器学习界的一流,以促进对基于机器学习的FWI多元化,严谨和可重复的研究。OpenFWI包括多个尺度的数据集,包含不同的域,涵盖各种级别的模型复杂性。除了数据集之外,我们还对每个数据集进行实证研究,具有完全卷积的深度学习模型。OpenFWI已被核心维护,并将通过新数据和实验结果定期更新。我们感谢社区的投入,帮助我们进一步改进OpenFWI。在当前版本,我们在OpenFWI中发布了七个数据集,其中为3D FWI指定了一个,其余的是2D场景。所有数据集和相关信息都可以通过我们的网站访问https://openfwi.github.io/。
translated by 谷歌翻译
在对地下地震成像的研究中,求解声波方程是现有模型中的关键成分。随着深度学习的发展,神经网络通过学习输入和方程解决方案之间的映射,特别是波动方程式,将神经网络应用于数值求解部分微分方程,因为如果要花很多时间,传统方法可能会很耗时解决了。以前专注于通过神经网络解决波动方程的工作考虑单个速度模型或多个简单速度模型,这在实践中受到限制。因此,受操作员学习的构想的启发,这项工作利用了傅立叶神经操作员(FNO)在可变速度模型的背景下有效地学习频域地震波场。此外,我们提出了一个与傅立叶神经操作员(PFNO)并行的新框架,以有效地训练基于FNO的求解器,给定多个源位置和频率。数值实验证明了OpenFWI数据集中使用复杂速度模型的FNO和PFNO的高精度。此外,跨数据集泛化测试验证了PFNO适应过分速度模型的。同样,在标签中存在随机噪声的情况下,PFNO具有强大的性能。最后,与传统的有限差异方法相比,PFNO在大规模测试数据集上接受了更高的计算效率。上述优势赋予了基于FNO的求解器的潜力,可以为地震波研究建立强大的模型。
translated by 谷歌翻译
在构建声学和现有房间的声学诊断的背景下,本文介绍了一种新方法,仅从房间脉冲响应(RIR)估计平均吸收系数。通过虚拟监督学习来解决该逆问题,即,使用人工神经网络对模拟数据集的回归隐式学习RIR-ob吸收映射。我们专注于基于良好的架构的简单模型。用于训练模型的几何,声学和仿真参数的关键选择是广泛讨论和研究的,同时在思想中,在思想中,旨在代表建筑物声学领域的条件。将学习的神经模型的估计误差与具有经典公式获得的那些,需要了解房间的几何形状和混响时间。在各种模拟测试集上进行了广泛的比较,突出了所学习模型可以克服这些公式下面弥漫声场假设的众所周知的众所周知的众所周知的不同条件。在声学可配置的房间测量的真实RIR上获得的结果表明,在1〜kHz及以上,当可以可靠地估计混响时间时,所提出的方法可相当于经典模型,即使在不能的情况下也继续工作。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
全波形反演(FWI)通常代表成像地下结构和物理参数的最新方法,但是,其实施通常面临着巨大的挑战,例如建立一个良好的初始模型以逃脱本地的最小值,并评估评估反转结果的不确定性。在本文中,我们建议使用连续和隐式定义的深神经表示形式提出隐式全波形反演(IFWI)算法。与对初始模型敏感的FWI相比,IFWI从增加的自由度中受益于深度学习优化,从而可以从随机初始化开始,从而大大降低了非唯一性的风险,并被当地的微型捕获。理论分析和实验分析都表明,在随机初始模型的情况下,IFWI能够收敛到全局最小值并产生具有精细结构的地下的高分辨率图像。此外,通过使用各种深度学习方法近似贝叶斯推断,可以轻松地对IFWI进行不确定性分析,这在本文中通过添加辍学神经元进行了分析。此外,IFWI具有一定程度的鲁棒性和强大的概括能力,在各种2D地质模型的实验中被例证。通过适当的设置,IFWI也可以非常适合多规模关节地球物理反演。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
目前,由精确的径向速度(RV)观察结果受到恒星活性引入的虚假RV信号的限制。我们表明,诸如线性回归和神经网络之类的机器学习技术可以有效地从RV观测中删除活动信号(由于星形/张图引起的)。先前的工作着重于使用高斯工艺回归等建模技术仔细地过滤活性信号(例如Haywood等人,2014年)。取而代之的是,我们仅使用对光谱线平均形状的更改进行系统地删除活动信号,也没有有关收集观测值的信息。我们对模拟数据(使用SOAP 2.0软件生成; Dumusque等人,2014年生成)和从Harps-N太阳能望远镜(Dumusque等,2015; Phillips等人2015; 2016; Collier训练)培训了机器学习模型。 Cameron等人2019)。我们发现,这些技术可以从模拟数据(将RV散射从82 cm/s提高到3 cm/s)以及从HARPS-N太阳能望远镜中几乎每天进行的600多种真实观察结果来预测和消除恒星活动(将RV散射从82 cm/s提高到3 cm/s)。 (将RV散射从1.753 m/s提高到1.039 m/s,提高了约1.7倍)。将来,这些或类似的技术可能会从太阳系以外的恒星观察中去除活动信号,并最终有助于检测到阳光状恒星周围可居住的区域质量系外行星。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
在实际应用桥梁称重(BWIM)方法中,车辆通过期间车轮或车轴的位置在大多数情况下是先决条件。为了避免使用常规轴检测器和桥梁类型特定的方法,我们提出了一种新的方法来通过在桥梁的任何点上放置加速度计来检测轴检测。为了开发尽可能简单且可理解的模型,将轴检测任务实现为二进制分类问题,而不是回归问题。该模型被用作完全卷积网络,以连续小波变换的形式处理信号。这允许在单个步骤中以最大效率处理任何长度的段落,同时在单个评估中使用多个量表。这使我们的方法能够在桥结构的任何位置使用加速信号,该位置用作虚拟轴检测器(VADS),而无需仅限于特定的结构类型的桥梁。为了测试提出的方法,我们分析了在长途交通线的钢槽铁路桥上记录的3787列火车通道。我们在测量数据上的结果表明,我们的模型检测到轴的95%,因此,正确检测到了134,800个以前看不见的轴的128,599。总共可以以20厘米的最大空间误差检测到90%的车轴,最大速度为$ v _ {\ mathrm {max}} = 56,3〜 \ mathrm {m/s} $。分析表明,即使在实际操作条件下,我们开发的模型也可以使用加速度计作为VAD。
translated by 谷歌翻译
我们研究机器学习(ML)和深度学习(DL)算法的能力,基于地下温度观察推断表面/地面交换通量。观察和助势是由代表哥伦比亚河附近的高分辨率数值模型,位于华盛顿州东南部的能源部汉福德遗址附近。随机测量误差,不同幅度的加入合成温度观察。结果表明,两个ML和DL方法可用于推断表面/地面交换通量。 DL方法,尤其是卷积神经网络,当用于用施加的平滑滤波器解释噪声温度数据时越高。然而,ML方法也表现良好,它们可以更好地识别减少数量的重要观察,这对于测量网络优化也是有用的。令人惊讶的是,M1和DL方法比向下通量更好地推断出向上的助焊剂。这与使用数值模型从温度观测推断出来的先前发现与先前的发现与先前的发现相反,并且可能表明将ML或DL推断的组合使用与数值推断相结合可以改善河流系统下方的助焊剂估计。
translated by 谷歌翻译
许多介入外科手术依赖于医学成像来可视化和跟踪仪器。这种成像方法不仅需要实时能力,而且还提供准确且强大的位置信息。在超声应用中,通常只有来自线性阵列的二维数据可用,并且由于以下三维中的精确位置估计是非微不足道的。在这项工作中,我们首先使用现实的合成训练数据训练神经网络,以估计对象与重建的超声图像中的相关轴向像差的平面外偏移。然后将获得的估计与卡尔曼滤波方法组合,该方法利用先前的时间框架中获得的定位估计来改善本地化鲁棒性并降低测量噪声的影响。使用模拟评估所提出的方法的准确性,并在使用新型光学超声成像设置获得的实验数据上证明了其实际适用性。实时提供准确和强大的位置信息。对于模拟数据的平均误差为0.1mm的平均误差,对于实验数据的平均误差为0.1mm的平均误差,轴向和横向坐标估计。三维定位最精确地高于1mm的高距距离,最大距离为25mm孔径为5mm。
translated by 谷歌翻译
地震数据处理在很大程度上取决于物理驱动的反问题的解决方案。在存在不利的数据采集条件下(例如,源和/或接收器的规则或不规则的粗略采样),基本的反问题变得非常不适,需要先进的信息才能获得令人满意的解决方案。刺激性反演,再加上固定基础的稀疏转换,代表了许多处理任务的首选方法,因为其实施简单性并在各种采集方案中都成功地应用了成功应用。利用深神经网络找到复杂的多维矢量空间的紧凑表示的能力,我们建议训练自动编码器网络,以了解输入地震数据和代表性潜流歧管之间的直接映射。随后,训练有素的解码器被用作手头物理驱动的逆问题的非线性预处理。提供了各种地震处理任务的合成数据和现场数据,并且所提出的非线性,学习的转换被证明超过了固定基本的转换,并更快地收敛到所寻求的解决方案。
translated by 谷歌翻译
逆源问题对于声学,地球物理学,非破坏性测试等的许多应用是至关重要的。传统成像方法受到分辨率极限的影响,防止源的区别比发射的波长小于发射的波长。在这项工作中,我们提出了一种基于物理信息的神经网络来解决源重新关注问题的方法,构建了一个新颖的损失项,该损失术语促进了网络的超解决能力,并基于波传播的物理。我们证明了在二维矩形波导中通过沿垂直横截面的波场记录的测量值进行成像的设置中的方法。结果表明,即使将彼此靠近时,该方法的能力也可以高精度近似于源的位置。
translated by 谷歌翻译
延时电阻率断层扫描(ERT)是一种流行的地球物理方法,可从电势差测量中估算三维(3D)通透性场。传统的反转和数据同化方法用于将这些数据吸收到水域模型中以估计渗透性。由于不适合性和维度的诅咒,现有的反转策略提供了较差的估计值和3D渗透率场的低分辨率。深度学习的最新进展为我们提供了强大的算法来克服这一挑战。本文提出了一个深度学习(DL)框架,以估算从延时ERT数据中的3D地下渗透性。为了测试所提出的框架的可行性,我们在模拟数据上训练了启用DL的逆模型。基于水域物理学的地下过程模型用于生成此合成数据以进行深度学习分析。结果表明,拟议的弱监督学习可以捕获3D渗透性领域中的显着空间特征。在数量上,在标记的训练,验证和测试数据集的平均平方平方误差(就自然日志而言)小于0.5。 R2评分(全局度量)大于0.75,每个单元格(本地度量)的百分比误差小于10%。最后,在计算成本方面的额外好处是,所提出的基于DL的反向模型至少比运行正向模型快的速度(104)倍。请注意,传统倒置可能需要多个前向模型模拟(例如,按10到1000的顺序),这非常昂贵。这种计算节省(O(105)-O(107))使提出的基于DL的逆模型具有对地下成像和实时ERT监视应用程序的吸引力,这是由于快速而相当准确的渗透性场估计。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
在这里,从动态大数据产生实验的深度学习分析,我们报告动态断裂韧性以及双连续纳米结构共聚物,聚脲的粘性参数。我们首先发明了一种新型动态线图像剪切干涉干涉仪(DL-ISI),其可以在单板冲击实验中沿着样品后表面的一条线产生位移梯度时间曲线,这些裂缝覆盖单板冲击实验中的裂缝启动和生长过程。然后,我们提出了一种基于卷积神经网络(CNN)的深度学习框架,可以反向确定来自DL-ISI条纹图像的准确凝聚参数。已经进行了具有中间平面裂缝的聚脲样品上的板冲击实验,并且产生的DL-ISI边缘图像已被条件生成的对抗网络(CGAN)染色。首当,通过具有计算数据集的预先训练的CNN架构成功地获得了Polyurea的动态粘性参数,这与相关方法和线性裂缝力学估计一致。在多脲中发现表观动态增韧,其中粘性强度被发现比具有相同冲击速度的对称冲击下的泡出强度高几乎三倍。这些实验结果填补了在裂纹尖端附近的极端局部装载条件下对共聚物的合作失效强度的目前了解的差距。该实验还展示了大数据发电实验的优点,它与最先进的机器学习算法相结合的创新的高通量实验技术。
translated by 谷歌翻译