亚图同构或子图匹配通常被认为是NP完整问题,在边缘权重采用真实值并受到测量噪声和可能的异常情况的实际应用中变得更加复杂。据我们所知,几乎所有子图匹配方法都利用节点标签执行节点节点匹配。在没有此类标签的情况下(在诸如图像匹配和映射匹配之类的应用中),这些子图匹配方法不起作用。我们提出了一种方法,可以在不精确的情况下识别子图和完整图之间的节点对应关系,而没有节点标签,分为两个步骤 - (a)从子图中提取最小的唯一拓扑保留子集,并在完整的图中找到其可行的匹配, (b)实现基于共识的算法来扩展匹配的节点设置,通过基于边界交换性配对唯一的路径。除了现有的子图匹配方法之外,所提出的方法显示出具有现实的亚线性计算效率,对随机测量噪声的鲁棒性和良好的统计特性。我们的方法也很容易适用于确切的匹配情况,而不会丧失通用性。为了证明该方法的有效性,分别对ERDOS-RENYI随机图和基于图像的仿射协变功能数据集进行了模拟和案例研究。
translated by 谷歌翻译
我们考虑了一个类别级别的感知问题,其中给定的2D或3D传感器数据描绘了给定类别的对象(例如,汽车),并且必须重建尽管级别的可变性,但必须重建对象的3D姿势和形状(即,不同的汽车模型具有不同的形状)。我们考虑了一个主动形状模型,其中 - 对于对象类别 - 我们获得了一个潜在的CAD模型库,描述该类别中的对象,我们采用了标准公式,其中姿势和形状是通过非非2D或3D关键点估算的-convex优化。我们的第一个贡献是开发PACE3D*和PACE2D*,这是第一个使用3D和2D关键点进行姿势和形状估计的最佳最佳求解器。这两个求解器都依赖于紧密(即精确)半决赛的设计。我们的第二个贡献是开发两个求解器的异常刺激版本,命名为PACE3D#和PACE2D#。为了实现这一目标,我们提出了Robin,Robin是一种一般的图理论框架来修剪异常值,该框架使用兼容性超图来建模测量的兼容性。我们表明,在类别级别的感知问题中,这些超图可以是通过关键点(以2D)或其凸壳(以3D为单位)构建的,并且可以通过最大的超级计算来修剪许多异常值。最后的贡献是广泛的实验评估。除了在模拟数据集和Pascal数据集上提供消融研究外,我们还将求解器与深关键点检测器相结合,并证明PACE3D#在Apolloscape数据集中在车辆姿势估算中改进了最新技术,并且其运行时间是兼容的使用实际应用。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
通常,使用网络编码在物理,生物,社会和信息科学中应用程序中复杂系统中实体之间的交互体系结构。为了研究复杂系统的大规模行为,研究网络中的中尺度结构是影响这种行为的构件。我们提出了一种新方法来描述网络中的低率中尺度结构,并使用多种合成网络模型和经验友谊,协作和蛋白质 - 蛋白质相互作用(PPI)网络说明了我们的方法。我们发现,这些网络拥有相对较少的“潜在主题”,可以成功地近似固定的中尺度上网络的大多数子图。我们使用一种称为“网络词典学习”(NDL)的算法,该算法结合了网络采样方法和非负矩阵分解,以学习给定网络的潜在主题。使用一组潜在主题对网络进行编码的能力具有多种应用于网络分析任务的应用程序,例如比较,降解和边缘推理。此外,使用我们的新网络去核和重建(NDR)算法,我们演示了如何通过仅使用直接从损坏的网络中学习的潜在主题来贬低损坏的网络。
translated by 谷歌翻译
匹配问题的图表寻求在两个图形的节点之间找到对齐,这最小化了邻接分歧的数量。解决图表匹配越来越重要,因为它在运营研究,计算机视觉,神经科学等中的应用程序。然而,当前最先进的算法效率低,匹配非常大的图形,尽管它们产生了良好的准确性。这些算法的主要计算瓶颈是线性分配问题,必须在每次迭代时解决。在本文中,我们利用最近的最佳运输领域的进步来取代接受的线性分配算法的使用。我们呈现山羊,对最先进的图形匹配近似算法“常见问题”(Vogelstein,2015)的修改,用CuSuri(2013)的“光速最优传输”方法替换其线性和分配步骤。该修改提供了对速度和经验匹配精度的改进。在模拟和实际数据示例中匹配图表中对该方法的有效性进行了说明。
translated by 谷歌翻译
图表匹配是一个重要的问题,它受到了广泛的关注,特别是在计算机视野领域。最近,最先进的方法寻求将图形与深度学习融合。然而,没有研究可以解释图形匹配算法在模型中播放的角色。因此,我们提出了一种积分对匹配问题的MILP制定的方法。该配方解决了最佳,它提供固有的基线。同时,通过释放图形匹配求解器的最佳保证并通过引入质量水平来导出类似的方法。这种质量级别控制了图形匹配求解器提供的解决方案的质量。此外,图表匹配问题的几个放松将进行测试。我们的实验评估提供了若干理论上的见解,并指导深图匹配方法的方向。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
我们开发了从运动管道的结构中恢复损坏的keypoint匹配的新统计信息。统计信息基于Keypoint匹配图的群集结构中出现的一致性约束。统计数据旨在为损坏的匹配和未损坏的匹配提供较小的值。这些新统计数据与迭代重新重量方案相结合以过滤关键点,然后可以将其从运动管道馈送到任何标准结构中。可以有效地实现该滤波方法并将其缩放到大规模的数据集,因为它仅需要稀疏矩阵乘法。我们展示了这种方法对来自运动数据集的合成和实际结构的功效,并表明它在这些任务中实现了最先进的准确性和速度。
translated by 谷歌翻译
在本文中,我们解决了在二进制形式中的两个程序的函数之间找到了对应或匹配的问题,这是二进制不同的最常见任务之一。我们将此问题的新配方作为图表编辑问题的特定实例通过程序的呼叫图。在该配方中,关于函数内容和呼叫图相似度同时评估映射的质量。我们表明该配方相当于网络对齐问题。基于MAX-Product信念传播,我们提出了解决这个问题的解决策略。最后,我们实施了我们的方法的原型,称为QBindiff,并提出了一个广泛的评估,表明我们的方法优于艺术的态度而不是工具。
translated by 谷歌翻译
拼图解决问题,从一组非重叠的无序视觉碎片构建一个连贯的整体,是许多应用的基础,然而,过去二十年的大部分文献都集中在较不太现实的谜题上正方形。在这里,我们正规化一种新型的拼图拼图,其中碎片是通过用任意数量的直切割的全局多边形/图像切割而产生的一般凸多边形,这是由庆祝的懒人辅助er序列的产生模型。我们分析了这种难题的理论特性,包括在碎片被几何噪声被污染时解决它们的固有挑战。为了应对此类困难并获得易行的解决方案,我们摘要作为一种具有分层循环约束和分层重建过程的多体弹簧质量动态系统的问题。我们定义了评估指标,并在普通植物和图案谜题上呈现实验结果,以表明它们是完全自动溶解的。
translated by 谷歌翻译
在许多领域,包括计算机视觉和模式识别的许多领域,图形匹配(GM)一直是一个基础。尽管最近取得了令人印象深刻的进展,但现有的深入GM方法通常在处理这两个图中的异常值方面都有困难,这在实践中无处不在。我们提出了基于加权图匹配的基于深的增强学习(RL)方法RGM,其顺序节点匹配方案自然适合选择性嵌入式匹配与异常值的策略。设计了可撤销的动作方案,以提高代理商在复杂受约束的匹配任务上的灵活性。此外,我们提出了一种二次近似技术,以在存在异常值的情况下使亲和力矩阵正常化。因此,当目标得分停止增长时,RL代理可以及时完成匹配,否则,否则会有额外的超参数,即需要常见的嵌入式数量来避免匹配异常值。在本文中,我们专注于学习最通用的GM形式的后端求解器:Lawler's QAP,其输入是亲和力矩阵。我们的方法还可以使用亲和力输入来增强其他求解器。合成和现实世界数据集的实验结果展示了其在匹配准确性和鲁棒性方面的出色性能。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
在图中找到最短路径与计算机视觉和图形中的许多问题相关,包括图像分割,形状匹配或离散表面上的测地距的计算。传统上,使用标量边缘权重的图表考虑了最短路径的概念,这使得可以通过添加各个边缘权重来计算路径的长度。然而,具有标量边缘权重的图对它们的表现率严重限制,因为通常使用边缘来编码更复杂的相互关系。在这项工作中,我们弥补了这种建模限制,并介绍了矩阵值边缘的图表中最短路径的新图形 - 理论概念。为此,我们定义了一种有意义的方式,用于量化矩阵值的边缘的路径长度,并且我们提出了一种简单但有效的算法来计算各个最短路径。虽然我们的形式主义是普遍的,因此适用于视野,图形及更远的各种环境,我们专注于在3D多种形式分析的背景下展示其优点。
translated by 谷歌翻译
我们提出了新的WASSTEREIN图形集群,用于动态更改图形。Wassersein聚类惩罚了图之间的拓扑差异。Wassersein聚类显示出优于广泛使用的K-Means聚类。该方法应用于更准确地确定动态变化功能性脑网络的状态空间。
translated by 谷歌翻译
\ textit {约束路径发现}的经典问题是一个经过充分研究但充满挑战的主题,在各个领域,例如沟通和运输等各个领域的应用。权重限制了最短路径问题(WCSPP),作为仅具有一个侧面约束的约束路径查找的基本形式,旨在计划成本最佳路径,其权重/资源使用受到限制。鉴于问题的双标准性质(即处理路径的成本和权重),解决WCSPP的方法具有一些带有双目标搜索的共同属性。本文在约束路径查找和双目标搜索中利用了最新的基于A*的最新技术,并为WCSPP提供了两种精确的解决方案方法,两者都可以在非常大的图表上解决硬性问题实例。我们从经验上评估了算法在新的大型和现实的问题实例上的性能,并在时空指标中显示出它们比最新算法的优势。本文还调查了优先级队列在被a*的约束搜索中的重要性。我们通过对逼真的和随机图进行了广泛的实验来展示,基于桶的队列没有打破打盘的方式可以有效地改善详尽的双标准搜索的算法性能。
translated by 谷歌翻译
我们考虑从数据学习树结构ising模型的问题,使得使用模型计算的后续预测是准确的。具体而言,我们的目标是学习一个模型,使得小组变量$ S $的后海报$ p(x_i | x_s)$。自推出超过50年以来,有效计算最大似然树的Chow-Liu算法一直是学习树结构图形模型的基准算法。 [BK19]示出了关于以预测的局部总变化损耗的CHOW-LIU算法的样本复杂性的界限。虽然这些结果表明,即使在恢复真正的基础图中也可以学习有用的模型是不可能的,它们的绑定取决于相互作用的最大强度,因此不会达到信息理论的最佳选择。在本文中,我们介绍了一种新的算法,仔细结合了Chow-Liu算法的元素,以便在预测的损失下有效地和最佳地学习树ising模型。我们的算法对模型拼写和对抗损坏具有鲁棒性。相比之下,我们表明庆祝的Chow-Liu算法可以任意次优。
translated by 谷歌翻译
我们呈现Quantumsync,第一个量子算法,用于在计算机视觉上下文中解决同步问题。特别是,我们专注于置换同步,涉及在离散变量中解决非凸优化问题。首先,首先将同步分为二次无约会二进制优化问题(QUBO)。虽然这种制定尊重问题的二进制本质,但确保结果是一系列排列需要额外的护理。因此,我们:(i)展示如何将置换约束插入QUBO问题,并且(ii)解决了在绝热量子计算机D波的当前产生的受限Qubo问题。由于Quantum退火,我们保证了全球最优能力,同时采样能量景观以产生信心估计。我们的概念验证在绝热D波计算机上实现展示量子机器提供了解决普遍又困难的同步问题的有希望的方法。
translated by 谷歌翻译
空间优化问题(SOP)的特征是管理决策变量,目标和/或约束功能的空间关系。在本文中,我们关注一种称为空间分区的特定类型的SOP,这是一个组合问题,这是由于存在离散空间单元。精确的优化方法不会随着问题的大小而扩展,尤其是在可行的时间限制内。这促使我们开发基于人群的元启发式学来解决此类SOP。但是,这些基于人群的方法采用的搜索操作员主要是为实参与者连续优化问题而设计的。为了使这些方法适应SOP,我们将域知识应用于设计空间感知的搜索操作员,以在保留空间约束的同时有效地通过离散搜索空间进行有效搜索。为此,我们提出了一种简单而有效的算法,称为基于群的空间模因算法(空间),并在学校(RE)区域问题上进行测试。对现实世界数据集进行了详细的实验研究,以评估空间的性能。此外,进行消融研究以了解空间各个组成部分的作用。此外,我们讨论空间〜如何在现实生活计划过程及其对不同方案的适用性并激发未来的研究方向有帮助。
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
在影响最大化(IM)的现实世界应用中,网络结构通常是未知的。因此,我们可以通过仅探索基础网络的一部分来确定最有影响力的种子节点,但对于节点查询的预算很小。由于收集节点元数据比通过查询节点调查节点之间的关系更具成本效益,我们提出了IM-Meta,这是一种端到端的解决方案,这是通过从查询和节点中检索信息的网络中IM的端到端解决方案元数据。但是,由于元数据的嘈杂性质和连通性推断的不确定性,使用这种元数据来帮助IM过程并非没有风险。为了应对这些挑战,我们制定了一个新的IM问题,旨在找到种子节点和查询节点。在IM-META中,我们开发了一种有效的方法,该方法可以迭代执行三个步骤:1)我们通过暹罗神经网络模型学习了收集的元数据和边缘之间的关系,2)我们选择了许多推断的自信边缘来构建增强的图形, 3)我们通过使用我们的拓扑感知的排名策略来最大程度地提高推断影响扩展,以确定查询的下一个节点。通过查询仅5%的节点,IM-META达到了上限性能的93%。
translated by 谷歌翻译