Mobile stereo-matching systems have become an important part of many applications, such as automated-driving vehicles and autonomous robots. Accurate stereo-matching methods usually lead to high computational complexity; however, mobile platforms have only limited hardware resources to keep their power consumption low; this makes it difficult to maintain both an acceptable processing speed and accuracy on mobile platforms. To resolve this trade-off, we herein propose a novel acceleration approach for the well-known zero-means normalized cross correlation (ZNCC) matching cost calculation algorithm on a Jetson Tx2 embedded GPU. In our method for accelerating ZNCC, target images are scanned in a zigzag fashion to efficiently reuse one pixel's computation for its neighboring pixels; this reduces the amount of data transmission and increases the utilization of on-chip registers, thus increasing the processing speed. As a result, our method is 2X faster than the traditional image scanning method, and 26% faster than the latest NCC method. By combining this technique with the domain transformation (DT) algorithm, our system show real-time processing speed of 32 fps, on a Jetson Tx2 GPU for 1,280x384 pixel images with a maximum disparity of 128. Additionally, the evaluation results on the KITTI 2015 benchmark show that our combined system is more accurate than the same algorithm combined with census by 7.26%, while maintaining almost the same processing speed.
translated by 谷歌翻译
In this paper, we propose a low error rate and real-time stereo vision system on GPU. Many stereo vision systems on GPU have been proposed to date. In those systems, the error rates and the processing speed are in trade-off relationship. We propose a real-time stereo vision system on GPU for the high resolution images. This system also maintains a low error rate compared to other fast systems. In our approach, we have implemented the cost aggregation (CA), cross-checking and median filter on GPU in order to realize the real-time processing. Its processing speed is 40 fps for 1436x992 pixels images when the maximum disparity is 145, and its error rate is the lowest among the GPU systems which are faster than 30 fps.
translated by 谷歌翻译
深度估计是某些领域的关键技术之一,例如自动驾驶和机器人导航。但是,使用单个传感器的传统方法不可避免地受到传感器的性能的限制。因此,提出了一种融合激光镜头和立体声摄像机的精度和健壮方法。该方法完全结合了LiDAR和立体声摄像机的优势,这些摄像头可以保留LIDAR高精度和图像的高分辨率的优势。与传统的立体声匹配方法相比,对象和照明条件的质地对算法的影响较小。首先,将LIDAR数据的深度转换为立体声摄像机的差异。由于LiDAR数据的密度在Y轴上相对稀疏,因此使用插值方法对转换的差异图进行了更采样。其次,为了充分利用精确的差异图,融合了差异图和立体声匹配以传播准确的差异。最后,将视差图转换为深度图。此外,转换后的差异图还可以提高算法的速度。我们在Kitti基准测试中评估了拟议的管道。该实验表明,我们的算法比几种经典方法具有更高的精度。
translated by 谷歌翻译
基于事件的视觉传感器基于视觉场景的变化产生具有高时间分辨率的异步事件流。随着事件的生成,这些传感器的特性允许精确快速地计算光学流量。对于从事件数据计算光学流的现有解决方案未能由于孔径问题而无法捕获真正的运动方向,请勿使用传感器的高时间分辨率,或者在嵌入式平台上实时运行太昂贵。在这项研究中,我们首先提供了我们之前的算法,武器(光圈稳健的多尺度流)的更快版本。新的优化软件版本(农场)显着提高了传统CPU的吞吐量。此外,我们呈现危害,一种农场算法的硬件实现,允许实时计算低功耗,嵌入式平台上的真实流量。建议的危害架构针对混合系统的片上器件,旨在最大限度地提高可配置性和吞吐量。硬件架构和农场算法是用异步的神经形态处理而开发的,放弃了事件帧的常用使用,而是仅使用不同事件的小历史运行,允许独立于传感器分辨率进行缩放。与现有方法相比,处理范例的这种变化将流量方向的估计变为高达73%,并在选择的基准配置上显示出危害最高为1.21 Mevent / s的危害。此吞吐量使实时性能能够实现迄今为止迄今为止最快速的基于活动的事件的光流的实现。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
稿件描述了快速且可扩展的架构和相关算法,用于计算卷曲和交叉相关。基本思想是将2D卷积和互相关与转换域中的1D卷积和交叉相关的集合。这是通过使用用于通用内核的离散定期氡变换(DPRT)来实现,并且使用SVD-LU分解对于低级核。该方法使用可以安装在现代FPGA和Zynq-SoC设备中的可扩展架构。基于不同类型的可用资源,对于$ p \ times P $块,2D卷积和交叉相关可以仅在$ O(P)$时钟周期中计算,最高$ O(P ^ 2)$时钟周期。因此,性能和所需数字和资源类型之间存在权衡。我们使用现代可编程设备(Virtex-7和Zynq-SoC)提供所提出的架构的实现。根据所需资源的金额和类型,我们表明提出的方法显着优于现有方法。
translated by 谷歌翻译
近年来,卷积神经网络(CNN)证明了它们在许多领域解决问题的能力,并且以前无法进行准确性。但是,这带有广泛的计算要求,这使得普通CPU无法提供所需的实时性能。同时,FPGA对加速CNN推断的兴趣激增。这是由于他们有能力创建具有不同级别的并行性的自定义设计。此外,与GPU相比,FPGA提供每瓦的性能更好。基于FPGA的CNN加速器的当前趋势是实现多个卷积层处理器(CLP),每个处理器都针对一层层量身定制。但是,CNN体系结构的日益增长的复杂性使得优化目标FPGA设备上可用的资源,以使最佳性能更具挑战性。在本文中,我们提出了CNN加速器和随附的自动设计方法,该方法采用元启发式学来分区可用的FPGA资源来设计多CLP加速器。具体而言,提出的设计工具采用模拟退火(SA)和禁忌搜索(TS)算法来查找所需的CLP数量及其各自的配置,以在给定的目标FPGA设备上实现最佳性能。在这里,重点是关键规格和硬件资源,包括数字信号处理器,阻止RAM和芯片内存储器带宽。提出了使用四个众所周知的基准CNN的实验结果和比较,表明所提出的加速框架既令人鼓舞又有前途。基于SA-/TS的多CLP比在加速Alexnet,Squeezenet 1.1,VGGNET和Googlenet架构上的最新单个/多CLP方法高1.31x-2.37倍高2.37倍。和VC709 FPGA板。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's best-performing stereo algorithms.
translated by 谷歌翻译
The last few years have seen a lot of work to address the challenge of low-latency and high-throughput convolutional neural network inference. Integrated photonics has the potential to dramatically accelerate neural networks because of its low-latency nature. Combined with the concept of Joint Transform Correlator (JTC), the computationally expensive convolution functions can be computed instantaneously (time of flight of light) with almost no cost. This 'free' convolution computation provides the theoretical basis of the proposed PhotoFourier JTC-based CNN accelerator. PhotoFourier addresses a myriad of challenges posed by on-chip photonic computing in the Fourier domain including 1D lenses and high-cost optoelectronic conversions. The proposed PhotoFourier accelerator achieves more than 28X better energy-delay product compared to state-of-art photonic neural network accelerators.
translated by 谷歌翻译
使用FASS-MVS,我们提出了一种具有表面感知半全局匹配的快速多视图立体声的方法,其允许从UAV捕获的单眼航空视频数据中快速深度和正常地图估计。反过来,由FASS-MVS估计的数据促进在线3D映射,这意味着在获取或接收到图像数据时立即和递增地生成场景的3D地图。 FASS-MVS由分层处理方案组成,其中深度和正常数据以及相应的置信度分数以粗略的方式估计,允许有效地处理由倾斜图像所固有的大型场景深度低无人机。实际深度估计采用用于致密多图像匹配的平面扫描算法,以产生深度假设,通过表面感知半全局优化来提取实际深度图,从而减少了SGM的正平行偏压。给定估计的深度图,然后通过将深度图映射到点云中并计算狭窄的本地邻域内的普通向量来计算像素 - 方面正常信息。在彻底的定量和消融研究中,我们表明,由FASS-MV计算的3D信息的精度接近离线多视图立体声的最先进方法,误差甚至没有一个幅度而不是科麦。然而,同时,FASS-MVS的平均运行时间估计单个深度和正常地图的距离小于ColMAP的14%,允许在1-中执行全高清图像的在线和增量处理2 Hz。
translated by 谷歌翻译
立体声匹配是许多视觉和机器人应用程序的基本构建块。信息性和简洁的成本量表示对于高准确性和效率的立体声匹配至关重要。在本文中,我们提出了一种新颖的成本量构建方法,称为“注意串联量”(ACV),该方法从相关线索中产生了注意力权重,以抑制冗余信息并增强串联体积中与匹配相关的信息。 ACV可以无缝嵌入大多数立体声匹配网络中,所得网络可以使用更轻巧的聚合网络,同时获得更高的精度。我们进一步设计了快速版本的ACV版本以实现实时性能,名为FAST-ACV,它产生了很高的可能性差异假设,以及来自低分辨率相关线索的相应注意力权重,可显着降低计算和记忆成本,同时保持令人满意的精度。我们快速ACV的核心思想是音量注意传播(VAP),它可以自动从上采样相关量中选择准确的相关值,并将这些准确的值传播到周围环境像素具有模棱两可的相关线索。此外,我们分别基于我们的ACV和Fast-ACV设计了高度准确的网络ACVNET和实时网络快速ACVNET,该网络在几个基准上实现了最新性能(即,我们的ACVNET排名第二,第二名在Kitti 2015和场景流以及所有已发布方法中的Kitti 2012和Eth3d的第三次;我们的快速ACVNET几乎优于现场流的所有最新实时方法,Kitti 2012和2015年,与此同时,与此同时更好的概括能力)
translated by 谷歌翻译
立体声匹配是计算机愿景中的一个重要任务,这些任务是几十年来引起了巨大的研究。虽然在差距准确度,密度和数据大小方面,公共立体声数据集难以满足模型的要求。在本文中,我们的目标是解决数据集和模型之间的问题,并提出了一个具有高精度差异地面真理的大规模立体声数据集,名为Plantstereo。我们使用了半自动方式来构造数据集:在相机校准和图像配准后,可以从深度图像获得高精度视差图像。总共有812个图像对覆盖着多种植物套装:菠菜,番茄,胡椒和南瓜。我们首先在四种不同立体声匹配方法中评估了我们的Plandstereo数据集。不同模型和植物的广泛实验表明,与整数精度的基础事实相比,Plantstereo提供的高精度差异图像可以显着提高深度学习模型的培训效果。本文提供了一种可行和可靠的方法来实现植物表面密集的重建。 PlantSereo数据集和相对代码可用于:https://www.github.com/wangqingyu985/plantstereo
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
深度神经网络(DNNS)的边缘训练是持续学习的理想目标。但是,这受到训练所需的巨大计算能力的阻碍。硬件近似乘数表明,它们在获得DNN推理加速器中获得资源效率的有效性;但是,使用近似乘数的培训在很大程度上尚未开发。为了通过支持DNN培训的近似乘数来构建有效的资源加速器,需要对不同DNN体系结构和不同近似乘数进行彻底评估。本文介绍了近似值,这是一个开源框架,允许使用模拟近似乘数快速评估DNN训练和推理。近似值与TensorFlow(TF)一样用户友好,仅需要对DNN体系结构的高级描述以及近似乘数的C/C ++功能模型。我们通过使用GPU(AMSIM)上的基于基于LUT的近似浮点(FP)乘数模拟器来提高乘数在乘数级别的模拟速度。近似值利用CUDA并有效地将AMSIM集成到张量库中,以克服商业GPU中的本机硬件近似乘数的缺乏。我们使用近似值来评估使用LENET和RESNETS体系结构的小型和大型数据集(包括Imagenet)的近似乘数的DNN训练的收敛性和准确性。与FP32和BFLOAT16乘数相比,评估表明测试准确性相似的收敛行为和可忽略不计的变化。与训练和推理中基于CPU的近似乘数模拟相比,GPU加速近似值快2500倍以上。基于具有本地硬件乘数的高度优化的闭合源Cudnn/Cublas库,原始张量量仅比近似值快8倍。
translated by 谷歌翻译
成倍增长的模型大小驱动了深度学习的持续成功,但它带来了过度的计算和记忆成本。从算法的角度来看,已经研究了模型的稀疏和量化以减轻问题。从体系结构的角度来看,硬件供应商提供了张量核心以进行加速。但是,由于严格的数据布局要求以及缺乏有效操纵低精度整数的支持,因此从稀疏的低精度矩阵操作中获得实践加速非常具有挑战性。我们提出了Magicube,这是一个高性能的稀疏矩阵库,用于张量芯上的低精度整数。 Magicube支持SPMM和SDDMM,这是深度学习的两个主要稀疏操作。 NVIDIA A100 GPU的实验结果表明,Magicube平均在供应商优化的库中平均达到1.44倍(高达2.37倍)的速度,用于稀疏内核,而在最先进的艺术品上进行了1.43倍的速度,具有可比的准确性。端到端稀疏变压器推断。
translated by 谷歌翻译
模型二进制化是一种压缩神经网络并加速其推理过程的有效方法。但是,1位模型和32位模型之间仍然存在显着的性能差距。实证研究表明,二进制会导致前进和向后传播中的信息损失。我们提出了一个新颖的分布敏感信息保留网络(DIR-NET),该网络通过改善内部传播和引入外部表示,将信息保留在前后传播中。 DIR-NET主要取决于三个技术贡献:(1)最大化二进制(IMB)的信息:最小化信息损失和通过重量平衡和标准化同时同时使用权重/激活的二进制误差; (2)分布敏感的两阶段估计器(DTE):通过共同考虑更新能力和准确的梯度来通过分配敏感的软近似来保留梯度的信息; (3)代表性二进制 - 意识蒸馏(RBD):通过提炼完整精确和二元化网络之间的表示来保留表示信息。 DIR-NET从统一信息的角度研究了BNN的前进过程和后退过程,从而提供了对网络二进制机制的新见解。我们的DIR-NET中的三种技术具有多功能性和有效性,可以在各种结构中应用以改善BNN。关于图像分类和客观检测任务的综合实验表明,我们的DIR-NET始终优于主流和紧凑型体系结构(例如Resnet,vgg,vgg,EfficityNet,darts和mobilenet)下最新的二进制方法。此外,我们在现实世界中的资源有限设备上执行DIR-NET,该设备可实现11.1倍的存储空间和5.4倍的速度。
translated by 谷歌翻译
卷积神经网络(CNN)在各种应用中表现出卓越的性能,但具有较高的计算复杂性。量化用于降低CNN的延迟和存储成本。在量化方法中,二进制重量网络(BWN和TWNS)在8位和4位量化方面具有独特的优势。他们用加法替代CNN中的乘法操作,这些操作在内存计数(IMC)设备上受到青睐。 BWNS的IMC加速度已被广泛研究。但是,尽管TWN的精度比BWN具有更高的准确性和更好的稀疏性,但IMC的加速度的研究有限。现有的IMC设备上的TWN效率低下,因为稀疏性无法很好地利用,并且加法操作效率不高。在本文中,我们建议FAT作为TWN的新型IMC加速器。首先,我们提出了一个稀疏的加法控制单元,该单元利用TWN的稀疏度跳过了零重量的无效操作。其次,我们提出了一个基于内存感知器的快速添加方案,以避免携带传播的时间开销并将其写回记忆单元。第三,我们进一步提出了一个组合的数据映射,以减少激活和权重的数据移动,并增加跨内存列的并行性。仿真结果表明,与最先进的IMC加速器Parapim相比,对于感官放大器水平上的加法操作,FAT达到2.00倍加速度,1.22倍功率效率和1.22倍面积效率。与帕拉皮姆(Parapim)相比,脂肪达到10.02倍的加速度和12.19倍的能量效率,而平均稀疏性为80%的网络。
translated by 谷歌翻译