已知尖峰神经网络(SNN)对于神经形态处理器实施非常有效,可以在传统深度学习方法上提高能效和计算潜伏期的数量级。最近,随着监督培训算法对SNN的背景,最近也使可比的算法性能成为可能。但是,包括音频,视频和其他传感器衍生数据在内的信息通常被编码为不适合SNN的实用值信号,从而阻止网络利用SPIKE定时信息。因此,从实价信号到尖峰的有效编码是至关重要的,并且会显着影响整个系统的性能。为了有效地将信号编码为尖峰,必须考虑与手头任务相关的信息以及编码尖峰的密度。在本文中,我们在扬声器独立数字分类系统的背景下研究了四种尖峰编码方法:发送三角洲,第一次尖峰的时间,漏水的集成和火神经元和弯曲尖刺算法。我们首先表明,与传统的短期傅立叶变换相比,在编码生物启发的耳蜗时,使用较少的尖峰会产生更高的分类精度。然后,我们证明了两种对三角洲变体的发送导致分类结果可与最先进的深卷积神经网络基线相媲美,同时降低了编码的比特率。最后,我们表明,几种编码方法在某些情况下导致比传统深度学习基线的性能提高,进一步证明了编码实用值信号中编码算法的尖峰力量艺术技术。
translated by 谷歌翻译
这项研究提出了依赖电压突触可塑性(VDSP),这是一种新型的脑启发的无监督的本地学习规则,用于在线实施HEBB对神经形态硬件的可塑性机制。拟议的VDSP学习规则仅更新了突触后神经元的尖峰的突触电导,这使得相对于标准峰值依赖性可塑性(STDP)的更新数量减少了两倍。此更新取决于突触前神经元的膜电位,该神经元很容易作为神经元实现的一部分,因此不需要额外的存储器来存储。此外,该更新还对突触重量进行了正规化,并防止重复刺激时的重量爆炸或消失。进行严格的数学分析以在VDSP和STDP之间达到等效性。为了验证VDSP的系统级性能,我们训练一个单层尖峰神经网络(SNN),以识别手写数字。我们报告85.01 $ \ pm $ 0.76%(平均$ \ pm $ s.d。)对于MNIST数据集中的100个输出神经元网络的精度。在缩放网络大小时,性能会提高(400个输出神经元的89.93 $ \ pm $ 0.41%,500个神经元为90.56 $ \ pm $ 0.27),这验证了大规模计算机视觉任务的拟议学习规则的适用性。有趣的是,学习规则比STDP更好地适应输入信号的频率,并且不需要对超参数进行手动调整。
translated by 谷歌翻译
超低功耗本地信号处理是始终安装在设备上的边缘应用的关键方面。尖刺神经网络的神经形态处理器显示出很大的计算能力,同时根据该领域的需要满足有限的电力预算。在这项工作中,我们提出了尖峰神经动力学作为扩张时间卷积的自然替代品。我们将这个想法扩展到WaveSense,这是一个由Wavenet Architects的激发灵感的尖峰神经网络。WaveSense使用简单的神经动力学,固定时间常数和简单的前馈结构,因此特别适用于神经形态实现。我们在几个数据集中测试此模型的功能,以用于关键字斑点。结果表明,该网络击败了其他尖刺神经网络的领域,并达到了诸如CNN和LSTM的人工神经网络的最先进的性能。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
In the past years, artificial neural networks (ANNs) have become the de-facto standard to solve tasks in communications engineering that are difficult to solve with traditional methods. In parallel, the artificial intelligence community drives its research to biology-inspired, brain-like spiking neural networks (SNNs), which promise extremely energy-efficient computing. In this paper, we investigate the use of SNNs in the context of channel equalization for ultra-low complexity receivers. We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE). For conversion of real-world data into spike signals we introduce a novel ternary encoding and compare it with traditional log-scale encoding. We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels. We highlight that mainly the conversion of the channel output to spikes introduces a small performance penalty. The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
关键字斑点(kWs)是一个重要的功能,使我们的周围环境中许多无处不在的智能设备进行交互,可以通过唤醒词或直接作为人机界面激活它们。对于许多应用程序,KWS是我们与设备交互的进入点,因此,始终是ON工作负载。许多智能设备都是移动的,并且它们的电池寿命受到持续运行的服务受到严重影响。因此,KWS和类似的始终如一的服务是在优化整体功耗时重点。这项工作解决了低成本微控制器单元(MCU)的KWS节能。我们将模拟二元特征提取与二元神经网络相结合。通过用拟议的模拟前端取代数字预处理,我们表明数据采集和预处理所需的能量可以减少29倍,将其份额从主导的85%的份额削减到仅为我们的整体能源消耗的16%参考KWS应用程序。语音命令数据集的实验评估显示,所提出的系统分别优于最先进的准确性和能效,在10级数据集中分别在10级数据集上达到1%和4.3倍,同时提供令人信服的精度 - 能源折衷包括71倍能量减少2%的精度下降。
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
为了在专门的神经形态硬件中进行节能计算,我们提出了尖峰神经编码,这是基于预测性编码理论的人工神经模型家族的实例化。该模型是同类模型,它是通过在“猜测和检查”的永无止境过程中运行的,神经元可以预测彼此的活动值,然后调整自己的活动以做出更好的未来预测。我们系统的互动性,迭代性质非常适合感官流预测的连续时间表述,并且如我们所示,模型的结构产生了局部突触更新规则,可以用来补充或作为在线峰值定位的替代方案依赖的可塑性。在本文中,我们对模型的实例化进行了实例化,该模型包括泄漏的集成和火灾单元。但是,我们系统所在的框架自然可以结合更复杂的神经元,例如Hodgkin-Huxley模型。我们在模式识别方面的实验结果证明了当二进制尖峰列车是通信间通信的主要范式时,模型的潜力。值得注意的是,尖峰神经编码在分类绩效方面具有竞争力,并且在从任务序列中学习时会降低遗忘,从而提供了更经济的,具有生物学上的替代品,可用于流行的人工神经网络。
translated by 谷歌翻译
图形卷积网络(GCN)由于学习图信息的显着表示能力而实现了令人印象深刻的性能。但是,GCN在深网上实施时需要昂贵的计算功率,因此很难将其部署在电池供电的设备上。相比之下,执行生物保真推理过程的尖峰神经网络(SNN)提供了节能的神经结构。在这项工作中,我们提出了SpikingGCN,这是一个端到端框架,旨在将GCN的嵌入与SNN的生物层性特征相结合。原始图数据根据图形卷积的合并编码为尖峰列车。我们通过利用与神经元节点结合的完全连接的层来进一步对生物信息处理进行建模。在各种场景(例如引用网络,图像图分类和推荐系统)中,我们的实验结果表明,该方法可以针对最新方法获得竞争性能。此外,我们表明,在神经形态芯片上的SpikingGCN可以将能源效率的明显优势带入图形数据分析中,这表明了其构建环境友好的机器学习模型的巨大潜力。
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
我们提出了Memprop,即采用基于梯度的学习来培训完全的申请尖峰神经网络(MSNNS)。我们的方法利用固有的设备动力学来触发自然产生的电压尖峰。这些由回忆动力学发出的尖峰本质上是类似物,因此完全可区分,这消除了尖峰神经网络(SNN)文献中普遍存在的替代梯度方法的需求。回忆性神经网络通常将备忘录集成为映射离线培训网络的突触,或者以其他方式依靠关联学习机制来训练候选神经元的网络。相反,我们直接在循环神经元和突触的模拟香料模型上应用了通过时间(BPTT)训练算法的反向传播。我们的实现是完全的综合性,因为突触重量和尖峰神经元都集成在电阻RAM(RRAM)阵列上,而无需其他电路来实现尖峰动态,例如模数转换器(ADCS)或阈值比较器。结果,高阶电物理效应被充分利用,以在运行时使用磁性神经元的状态驱动动力学。通过朝着非同一梯度的学习迈进,我们在以前报道的几个基准上的轻巧密集的完全MSNN中获得了高度竞争的准确性。
translated by 谷歌翻译
Sparse representation has attracted great attention because it can greatly save storage re- sources and find representative features of data in a low-dimensional space. As a result, it may be widely applied in engineering domains including feature extraction, compressed sensing, signal denoising, picture clustering, and dictionary learning, just to name a few. In this paper, we propose a spiking sampling network. This network is composed of spiking neurons, and it can dynamically decide which pixel points should be retained and which ones need to be masked according to the input. Our experiments demonstrate that this approach enables better sparse representation of the original image and facilitates image reconstruction compared to random sampling. We thus use this approach for compressing massive data from the dynamic vision sensor, which greatly reduces the storage requirements for event data.
translated by 谷歌翻译
用于神经形态计算的生物学启发的尖峰神经元是具有动态状态变量的非线性滤波器 - 与深度学习中使用的无状态神经元模型非常不同。 Notel Intel的神经形态研究处理器Loihi 2的下一个版本支持各种具有完全可编程动态的最有状态尖峰神经元模型。在这里,我们展示了先进的尖峰神经元模型,可用于有效地处理仿真Loihi 2硬件的仿真实验中的流数据。在一个示例中,共振和火(RF)神经元用于计算短时间傅里叶变换(STFT),其具有类似的计算复杂度,但是输出带宽的47倍而不是传统的STFT。在另一个例子中,我们描述了一种使用时间率RF神经元的光学流量估计算法,其需要比传统的基于DNN的解决方案超过90倍。我们还展示了有前途的初步结果,使用BackPropagation培训RF神经元进行音频分类任务。最后,我们表明,跳跃的血管谐振器 - RF神经元的变体 - 重复耳蜗的新特性,并激励一种有效的基于尖峰的谱图编码器。
translated by 谷歌翻译
最近的研究表明,卷积神经网络(CNNS)不是图像分类的唯一可行的解决方案。此外,CNN中使用的重量共享和反向验证不对应于预测灵长类动物视觉系统中存在的机制。为了提出更加生物合理的解决方案,我们设计了使用峰值定时依赖性塑性(STDP)和其奖励调制变体(R-STDP)学习规则训练的本地连接的尖峰神经网络(SNN)。使用尖刺神经元和局部连接以及强化学习(RL)将我们带到了所提出的架构中的命名法生物网络。我们的网络由速率编码的输入层组成,后跟局部连接的隐藏层和解码输出层。采用尖峰群体的投票方案进行解码。我们使用Mnist DataSet获取图像分类准确性,并评估我们有益于于不同目标响应的奖励系统的稳健性。
translated by 谷歌翻译
神经形态计算是一种新兴的计算范式,它从批处理的处理转向在线,事件驱动的流数据处理。当神经形态芯片与基于尖峰的传感器结合在一起时,只有在峰值时间内记录相关事件并证明对变化条件的低延迟响应时,才能通过消耗能量来固有地适应数据分布的“语义”。环境。本文为神经形态无线网络系统系统提出了端到端设计,该系统集成了基于尖峰的传感,处理和通信。在拟议的神经系统系统中,每个传感设备都配备了神经形态传感器,尖峰神经网络(SNN)和带有多个天线的脉冲无线电发射器。传输发生在配备了多Antenna脉冲无线电接收器和SNN的接收器上的共享褪色通道上进行。为了使接收器适应褪色的通道条件,我们引入了一项超网络,以使用飞行员控制解码SNN的权重。飞行员,编码SNN,解码SNN和超网络经过多个通道实现的共同训练。该系统被证明可以显着改善基于传统的基于框架的数字解决方案以及替代性非自适应训练方法,从时间到准确性和能源消耗指标方面。
translated by 谷歌翻译
在本文中,我们提出了一种节能的SNN体系结构,该体系结构可以通过提高的精度无缝地运行深度尖峰神经网络(SNN)。首先,我们提出了一个转换意识培训(CAT),以减少无硬件实施开销而无需安排SNN转换损失。在拟议的CAT中,可以有效利用用于在ANN训练过程中模拟SNN的激活函数,以减少转换后的数据表示误差。基于CAT技术,我们还提出了一项首要尖峰编码,该编码可以通过使用SPIKE时间信息来轻巧计算。支持提出技术的SNN处理器设计已使用28nm CMOS流程实施。该处理器的推理能量分别为486.7UJ,503.6UJ和1426UJ的最高1级准确性,分别为91.7%,67.9%和57.4%,分别为CIFAR-10,CIFAR-100和TININE-IMIMAGENET处理。16具有5位对数权重。
translated by 谷歌翻译
尖峰神经网络(SNN)为时间信号处理提供了有效的计算机制,尤其是与低功率SNN推理相结合时。历史上很难配置SNN,缺乏为任意任务寻找解决方案的一般方法。近年来,逐渐发芽的优化方法已应用于SNN,并且越来越轻松。因此,SNN和SNN推理处理器为在没有云依赖性的能源约束环境中为商业低功率信号处理提供了一个良好的平台。但是,迄今为止,行业中的ML工程师无法访问这些方法,需要研究生级培训才能成功配置单个SNN应用程序。在这里,我们演示了一条方便的高级管道,用于设计,训练和部署任意的时间信号处理应用程序,向子-MW SNN推理硬件。我们使用用于时间信号处理的新型直接SNN体系结构,使用突触时间常数的金字塔在一系列时间尺度上提取信号特征。我们在环境音频分类任务上演示了这种体系结构,该任务部署在流式传输模式下的Xylo SNN推理处理器上。我们的应用以低功率(<4MUW推理功率)达到了高准确性(98%)和低潜伏期(100ms)。我们的方法使培训和部署SNN应用程序可用于具有通用NN背景的ML工程师,而无需先前的Spiking NNS经验。我们打算将神经形态硬件和SNN成为商业低功率和边缘信号处理应用程序的吸引人选择。
translated by 谷歌翻译