在本文中,我们在贝叶斯神经网络中展示了一种用于在线(顺序)推断的新算法,并显示其适用于解决上下文强盗问题的适用性。关键的想法是将扩展的卡尔曼滤波器(在每个时间步地上局部化的似然函数与参数的(学习或随机)的低维仿射子空间组合;使用子空间使我们能够将我们的算法扩展到具有$ \ SIM 1M $参数的模型。虽然大多数其他神经匪徒方法需要存储整个过去的数据集,以避免“灾难性忘记”的问题,我们的方法使用恒定的内存。这是可能的,因为我们代表了模型中所有参数的不确定性,而不仅仅是最终的线性层。我们在“Deep Bayesian Bandit摊牌”基准和Mnist和推荐系统上显示出良好的结果。
translated by 谷歌翻译
对于许多强化学习(RL)应用程序,指定奖励是困难的。本文考虑了一个RL设置,其中代理仅通过查询可以询问可以的专家来获取有关奖励的信息,例如,评估单个状态或通过轨迹提供二进制偏好。从如此昂贵的反馈中,我们的目标是学习奖励的模型,允许标准RL算法实现高预期的回报,尽可能少的专家查询。为此,我们提出了信息定向奖励学习(IDRL),它使用奖励的贝叶斯模型,然后选择要最大化信息增益的查询,这些查询是有关合理的最佳策略之间的返回差异的差异。与针对特定类型查询设计的先前主动奖励学习方法相比,IDRL自然地适应不同的查询类型。此外,它通过将焦点转移降低奖励近似误差来实现类似或更好的性能,从而降低奖励近似误差,以改善奖励模型引起的策略。我们支持我们的调查结果,在多个环境中进行广泛的评估,并具有不同的查询类型。
translated by 谷歌翻译
我们在这里采用贝叶斯非参数混合模型,以将多臂匪徒扩展到尤其是汤普森采样,以扩展到存在奖励模型不确定性的场景。在随机的多臂强盗中,播放臂的奖励是由未知分布产生的。奖励不确定性,即缺乏有关奖励生成分布的知识,引起了探索 - 开发权的权衡:强盗代理需要同时了解奖励分布的属性,并顺序决定下一步要采取哪种操作。在这项工作中,我们通过采用贝叶斯非参数高斯混合模型来进行奖励模型不确定性,将汤普森的抽样扩展到场景中,以进行灵活的奖励密度估计。提出的贝叶斯非参数混合物模型汤普森采样依次学习了奖励模型,该模型最能近似于真实但未知的每臂奖励分布,从而实现了成功的遗憾表现。我们基于基于后验分析的新颖的分析得出的,这是一种针对该方法的渐近遗憾。此外,我们从经验上评估了其在多样化和以前难以捉摸的匪徒环境中的性能,例如,在指数级的家族中,奖励不受异常值和不同的每臂奖励分布。我们表明,拟议的贝叶斯非参数汤普森取样优于表现,无论是平均累积的遗憾和遗憾的波动,最先进的替代方案。在存在强盗奖励模型不确定性的情况下,提出的方法很有价值,因为它避免了严格的逐案模型设计选择,但提供了重要的遗憾。
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
在潜在的强盗问题中,学习者可以访问奖励分布,并且 - 对于非平稳的变体 - 环境的过渡模型。奖励分布在手臂和未知的潜在状态下进行条件。目的是利用奖励历史来识别潜在状态,从而使未来的武器选择最佳。潜在的匪徒设置将自己适用于许多实际应用,例如推荐人和决策支持系统,其中丰富的数据允许在线学习的环境模型的离线估算仍然是关键组成部分。在这种情况下,以前的解决方案始终根据代理商对国家的信念选择最高的奖励组,而不是明确考虑信息收集臂的价值。这种信息收集的武器不一定会提供最高的奖励,因此永远不会选择始终选择最高奖励武器的代理商选择。在本文中,我们提出了一种潜在土匪信息收集的方法。鉴于特殊的奖励结构和过渡矩阵,我们表明,鉴于代理商对国家的信念,选择最好的手臂会产生更高的遗憾。此外,我们表明,通过仔细选择武器,我们可以改善对国家分布的估计,从而通过将来通过更好的手臂选择来降低累积后悔。我们在合成和现实世界数据集上评估了我们的方法,显示出对最新方法的遗憾显着改善。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
神经匪使从业者能够有效地在非线性奖励功能上有效地运行。虽然在一般的上下文匪徒通常利用高斯过程(GP)决策的预测分布,但最成功的神经变体仅在推导中使用最后一层参数。神经内核(NK)的研究最近在深网络和GPS之间建立了对应的对应,考虑到NN的所有参数,并且可以比大多数贝叶斯NN更有效地培训。我们建议直接应用NK诱导的分布,以指导基于上行的束缚或汤普森采样的政策。我们展示了NK匪徒在高度非线性结构化数据上实现最先进的性能。此外,我们分析了实际考虑因素,例如训练频率和模型分区。我们相信我们的工作将有助于更好地了解利用NKS在应用环境中的影响。
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, SGLD, and temperature scaling.
translated by 谷歌翻译
Many practical applications, such as recommender systems and learning to rank, involve solving multiple similar tasks. One example is learning of recommendation policies for users with similar movie preferences, where the users may still rank the individual movies slightly differently. Such tasks can be organized in a hierarchy, where similar tasks are related through a shared structure. In this work, we formulate this problem as a contextual off-policy optimization in a hierarchical graphical model from logged bandit feedback. To solve the problem, we propose a hierarchical off-policy optimization algorithm (HierOPO), which estimates the parameters of the hierarchical model and then acts pessimistically with respect to them. We instantiate HierOPO in linear Gaussian models, for which we also provide an efficient implementation and analysis. We prove per-task bounds on the suboptimality of the learned policies, which show a clear improvement over not using the hierarchical model. We also evaluate the policies empirically. Our theoretical and empirical results show a clear advantage of using the hierarchy over solving each task independently.
translated by 谷歌翻译
通过观察自己的行为来了解决策者的优先事项对于在医疗保健等决策过程中的透明度和问责制至关重要。尽管传统的政策学习方法几乎总是假定行为的平稳性,但在实践中几乎不正确:随着临床专业人员随着时间的流逝,医学实践不断发展。例如,随着医学界对器官移植的理解多年来的发展,一个相关的问题是:实际的器官分配政策如何发展?为了给出答案,我们希望采用一种政策学习方法,该方法提供了可解释的决策代表,尤其是捕获代理商对世界的非统计知识,并以离线方式运作。首先,我们将决策者的不断发展的行为对上下文的强盗进行了建模,并正式化了背景匪徒(ICB)的问题。其次,我们提出了两种混凝土算法作为解决方案,学习代理行为的学习参数和非参数表示。最后,使用真实和模拟数据进行肝移植,我们说明了我们方法的适用性和解释性,以及基准测试并验证其准确性。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
元,多任务和联合学习可以全部被视为解决类似的任务,从反映任务相似之处的未知分发中汲取类似的任务。在这项工作中,我们提供了所有这些问题的统一视图,因为在分层贝叶斯匪徒中采取行动。我们分析了一种自然的分层汤普森采样算法(HIERTS),可以应用于此类中的任何问题。我们的遗憾界限在此类问题的许多情况下持有,包括当任务顺序或并行解决时;并捕获问题的结构,使得遗憾地随着任务的宽度而减少。我们的证据依赖于新的总方差分解,可以应用于其他图形模型结构。最后,我们的理论是由实验补充的,表明层次结构有助于任务之间的知识共享。这证实了分层贝叶斯匪徒是一种普遍和统计学的工具,用于学习与类似的匪徒任务进行行动。
translated by 谷歌翻译
深度加固学习在各种类型的游戏中使人类水平甚至超级人类性能。然而,学习所需的探测量通常很大。深度加强学习也具有超级性能,因为没有人类能够实现这种探索。为了解决这个问题,我们专注于\ Textit {Saspicing}策略,这是一种与现有优化算法的定性不同的方法。因此,我们提出了线性RS(LINR),其是一种令人满意的算法和风险敏感的满足(RS)的线性扩展,用于应用于更广泛的任务。 RS的概括提供了一种算法,可以通过采用现有优化算法的不同方法来减少探索性操作的体积。 Linrs利用线性回归和多字符分类来线性地近似于RS计算所需的动作选择的动作值和比例。我们的实验结果表明,与上下文强盗问题中的现有算法相比,Linrs减少了探索和运行时间的数量。这些结果表明,满足算法的进一步概括对于复杂的环境可能是有用的,包括要用深增强学习处理的环境。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
Efficient exploration remains a major challenge for reinforcement learning (RL). Common dithering strategies for exploration, such as -greedy, do not carry out temporally-extended (or deep) exploration; this can lead to exponentially larger data requirements. However, most algorithms for statistically efficient RL are not computationally tractable in complex environments. Randomized value functions offer a promising approach to efficient exploration with generalization, but existing algorithms are not compatible with nonlinearly parameterized value functions. As a first step towards addressing such contexts we develop bootstrapped DQN. We demonstrate that bootstrapped DQN can combine deep exploration with deep neural networks for exponentially faster learning than any dithering strategy. In the Arcade Learning Environment bootstrapped DQN substantially improves learning speed and cumulative performance across most games.
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
已知生物制剂在他们的生活过程中学习许多不同的任务,并且能够重新审视以前的任务和行为,而没有表现不损失。相比之下,人工代理容易出于“灾难性遗忘”,在以前任务上的性能随着所获取的新的任务而恶化。最近使用该方法通过鼓励参数保持接近以前任务的方法来解决此缺点。这可以通过(i)使用特定的参数正常数来完成,该参数正常数是在参数空间中映射合适的目的地,或(ii)通过将渐变投影到不会干扰先前任务的子空间来指导优化旅程。然而,这些方法通常在前馈和经常性神经网络中表现出子分子表现,并且经常性网络对支持生物持续学习的神经动力学研究感兴趣。在这项工作中,我们提出了自然的持续学习(NCL),一种统一重量正则化和预测梯度下降的新方法。 NCL使用贝叶斯重量正常化来鼓励在收敛的所有任务上进行良好的性能,并将其与梯度投影结合使用先前的精度,这可以防止在优化期间陷入灾难性遗忘。当应用于前馈和经常性网络中的连续学习问题时,我们的方法占据了标准重量正则化技术和投影的方法。最后,训练有素的网络演变了特定于任务特定的动态,这些动态被认为是学习的新任务,类似于生物电路中的实验结果。
translated by 谷歌翻译
随机上下文的匪徒问题,建造了勘探和开发之间的权衡取舍,具有许多真实的应用,包括推荐系统,在线广告和临床试验。与许多其他机器学习算法一样,上下文匪徒算法通常具有一个或多个超参数。例如,在大多数最佳的随机上下文匪徒算法中,有一个未知的探索参数可以控制勘探和开发之间的权衡。适当的超参数选择对于上下文的匪徒算法表现良好至关重要。但是,由于没有预采用的数据集,因此必须使用离线调谐方法在上下文匪徒环境中选择超参数,并且必须实时做出决策。为了解决这个问题,我们首先提出了一个两层匪徒结构,用于自动调整勘探参数并将其进一步推广到联合匪徒框架,该框架可以在上下文的匪徒环境中动态学习多个超参数。我们得出了我们提议的联合匪徒框架的遗憾界限,并表明它可以避免对要调整的超参数的数量成倍依赖。此外,它在某些情况下达到了最佳的遗憾界限。联合匪徒框架足够通用,可以在许多流行的上下文匪徒算法(例如Linucb,Lints,UCB-GLM等)中处理调整任务。在合成数据集和真实数据集上进行了实验,以验证我们提出的框架的有效性。
translated by 谷歌翻译