在潜在的强盗问题中,学习者可以访问奖励分布,并且 - 对于非平稳的变体 - 环境的过渡模型。奖励分布在手臂和未知的潜在状态下进行条件。目的是利用奖励历史来识别潜在状态,从而使未来的武器选择最佳。潜在的匪徒设置将自己适用于许多实际应用,例如推荐人和决策支持系统,其中丰富的数据允许在线学习的环境模型的离线估算仍然是关键组成部分。在这种情况下,以前的解决方案始终根据代理商对国家的信念选择最高的奖励组,而不是明确考虑信息收集臂的价值。这种信息收集的武器不一定会提供最高的奖励,因此永远不会选择始终选择最高奖励武器的代理商选择。在本文中,我们提出了一种潜在土匪信息收集的方法。鉴于特殊的奖励结构和过渡矩阵,我们表明,鉴于代理商对国家的信念,选择最好的手臂会产生更高的遗憾。此外,我们表明,通过仔细选择武器,我们可以改善对国家分布的估计,从而通过将来通过更好的手臂选择来降低累积后悔。我们在合成和现实世界数据集上评估了我们的方法,显示出对最新方法的遗憾显着改善。
translated by 谷歌翻译
可以将相当多的现实问题提出为决策问题,其中必须反复从一组替代方案中做出适当的选择。多次专家判断,无论是人为的还是人为的,都可以帮助做出正确的决定,尤其是在探索替代解决方案的昂贵时。由于专家意见可能会偏离,因此可以通过汇总独立判断来解决找到正确的替代方案的问题作为集体决策问题(CDM)。当前的最新方法集中于有效地找到最佳专家,因此如果所有专家均不合格或过于偏见,则表现不佳,从而可能破坏决策过程。在本文中,我们提出了一种基于上下文多臂匪徒问题(CMAB)的新算法方法,以识别和抵消这种偏见的专业知识。我们探索同质,异质和两极分化的专家小组,并表明这种方法能够有效利用集体专业知识,优于最先进的方法,尤其是当提供的专业知识质量降低时。我们的新型CMAB启发方法实现了更高的最终表现,并且在收敛的同时比以前的自适应算法更快。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
对于许多强化学习(RL)应用程序,指定奖励是困难的。本文考虑了一个RL设置,其中代理仅通过查询可以询问可以的专家来获取有关奖励的信息,例如,评估单个状态或通过轨迹提供二进制偏好。从如此昂贵的反馈中,我们的目标是学习奖励的模型,允许标准RL算法实现高预期的回报,尽可能少的专家查询。为此,我们提出了信息定向奖励学习(IDRL),它使用奖励的贝叶斯模型,然后选择要最大化信息增益的查询,这些查询是有关合理的最佳策略之间的返回差异的差异。与针对特定类型查询设计的先前主动奖励学习方法相比,IDRL自然地适应不同的查询类型。此外,它通过将焦点转移降低奖励近似误差来实现类似或更好的性能,从而降低奖励近似误差,以改善奖励模型引起的策略。我们支持我们的调查结果,在多个环境中进行广泛的评估,并具有不同的查询类型。
translated by 谷歌翻译
本文介绍了一种新型的非平稳动态定价算法设计,定价代理面临不完整的需求信息和市场环境转移。代理商进行了价格实验,以了解每种产品的需求曲线和最大化价格,同时意识到市场环境的变化,以避免提供次优价的高机会成本。拟议的酸P扩展了来自统计机器学习的信息指导的采样(IDS)算法,以包括微观经济选择理论,并采用新颖的定价策略审核程序,以避免在市场环境转移后避免次优定价。拟议的酸P在一系列市场环境变化中胜过包括上置信度结合(UCB)和汤普森采样(TS)在内的匪徒算法。
translated by 谷歌翻译
我们在这里采用贝叶斯非参数混合模型,以将多臂匪徒扩展到尤其是汤普森采样,以扩展到存在奖励模型不确定性的场景。在随机的多臂强盗中,播放臂的奖励是由未知分布产生的。奖励不确定性,即缺乏有关奖励生成分布的知识,引起了探索 - 开发权的权衡:强盗代理需要同时了解奖励分布的属性,并顺序决定下一步要采取哪种操作。在这项工作中,我们通过采用贝叶斯非参数高斯混合模型来进行奖励模型不确定性,将汤普森的抽样扩展到场景中,以进行灵活的奖励密度估计。提出的贝叶斯非参数混合物模型汤普森采样依次学习了奖励模型,该模型最能近似于真实但未知的每臂奖励分布,从而实现了成功的遗憾表现。我们基于基于后验分析的新颖的分析得出的,这是一种针对该方法的渐近遗憾。此外,我们从经验上评估了其在多样化和以前难以捉摸的匪徒环境中的性能,例如,在指数级的家族中,奖励不受异常值和不同的每臂奖励分布。我们表明,拟议的贝叶斯非参数汤普森取样优于表现,无论是平均累积的遗憾和遗憾的波动,最先进的替代方案。在存在强盗奖励模型不确定性的情况下,提出的方法很有价值,因为它避免了严格的逐案模型设计选择,但提供了重要的遗憾。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
大多数在线平台都在努力从与用户的互动中学习,许多人从事探索:为了获取新信息而做出潜在的次优选择。我们研究探索与竞争之间的相互作用:这样的平台如何平衡学习探索和用户的竞争。在这里,用户扮演三个不同的角色:他们是产生收入的客户,他们是学习的数据来源,并且是自私的代理商,可以在竞争平台中进行选择。我们考虑了一种风格化的双重垄断模型,其中两家公司面临着相同的多军强盗问题。用户一一到达,并在两家公司之间进行选择,因此,只有在选择它的情况下,每个公司都在其强盗问题上取得进展。通过理论结果和数值模拟的混合,我们研究了竞争是否会激发更好的Bandit算法的采用,以及它是否导致用户增加福利。我们发现,Stark竞争会导致公司致力于导致低福利的“贪婪”强盗算法。但是,通过向公司提供一些“免费”用户来激励更好的探索策略并增加福利来削弱竞争。我们调查了削弱竞争的两个渠道:放松用户的理性并为一家公司带来首次推广优势。我们的发现与“竞争与创新”关系密切相关,并阐明了数字经济中的第一步优势。
translated by 谷歌翻译
通过观察自己的行为来了解决策者的优先事项对于在医疗保健等决策过程中的透明度和问责制至关重要。尽管传统的政策学习方法几乎总是假定行为的平稳性,但在实践中几乎不正确:随着临床专业人员随着时间的流逝,医学实践不断发展。例如,随着医学界对器官移植的理解多年来的发展,一个相关的问题是:实际的器官分配政策如何发展?为了给出答案,我们希望采用一种政策学习方法,该方法提供了可解释的决策代表,尤其是捕获代理商对世界的非统计知识,并以离线方式运作。首先,我们将决策者的不断发展的行为对上下文的强盗进行了建模,并正式化了背景匪徒(ICB)的问题。其次,我们提出了两种混凝土算法作为解决方案,学习代理行为的学习参数和非参数表示。最后,使用真实和模拟数据进行肝移植,我们说明了我们方法的适用性和解释性,以及基准测试并验证其准确性。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
我们解决了在线顺序决策的问题,即在利用当前知识以最大程度地提高绩效和探索新信息以使用多武器的强盗框架获得长期利益之间的权衡平衡。汤普森采样是选择解决这一探索探索困境的动作的启发式方法之一。我们首先提出了一个通用框架,该框架可帮助启发性地调整汤普森采样中的探索与剥削权衡取舍,并使用后部分布中的多个样本进行调整。利用此框架,我们为多臂匪徒问题提出了两种算法,并为累积遗憾提供了理论界限。接下来,我们证明了拟议算法对汤普森采样的累积遗憾表现的经验改善。我们还显示了所提出的算法在现实世界数据集上的有效性。与现有方法相反,我们的框架提供了一种机制,可以根据手头的任务改变探索/开发量。为此,我们将框架扩展到两个其他问题,即,在土匪中最佳的ARM识别和时间敏感学习,并将我们的算法与现有方法进行比较。
translated by 谷歌翻译
像汤普森采样等多武装强盗算法可用于进行自适应实验,其中最大化奖励意味着数据用于逐步为更多参与者分配更有效的武器。这些转让策略增加了统计假设试验的风险,鉴定武器之间的差异,当没有一个时,并且在真正是一个是一个时,武器的差异存在差异。我们为2臂实验仿真,探讨了两种算法,这些算法结合了统计分析的均匀随机化的益处,具有通过Thompson采样(TS)实现的奖励最大化的益处。首先,前两种汤普森采样增加了固定量的均匀随机分配(UR)随时间均匀传播。二,一种新的启发式算法,称为TS Postdiff(差异后概率)。 Ts Postdiff采用贝叶斯方法来混合TS和UR:使用UR分配分配参与者的概率是后部概率,即两个臂之间的差异是“小”(低于某个阈值),允许在存在时探索更多的探索很少或没有奖励获得。我们发现TS PostDiff方法跨多种效果大小进行良好,因此不需要根据真实效果大小的猜测进行调整。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
节能导航构成了电动汽车的一个重要挑战,因为其有限的电池容量。我们采用贝叶斯方法在用于高效的导航路段的能耗模型。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种勘探战略,如汤普森采样和上界的信心。然后,我们我们的在线学习框架扩展到多代理设置,其中多个车辆自适应导航和学习的能量模型的参数。我们分析汤普森采样和它在单剂和多代理设置性能建立严格的遗憾界限,通过下成批反馈算法的分析。最后,我们证明我们的方法通过实验,在几个真实世界的城市道路网络的性能。
translated by 谷歌翻译
我们考虑非平稳马尔可夫决策过程中的无模型增强学习(RL)。只要其累积变化不超过某些变化预算,奖励功能和国家过渡功能都可以随时间随时间变化。我们提出了重新启动的Q学习,以上置信度范围(RestartQ-UCB),这是第一个用于非平稳RL的无模型算法,并表明它在动态遗憾方面优于现有的解决方案。具体而言,带有freedman型奖励项的restartq-ucb实现了$ \ widetilde {o}(s^{\ frac {1} {3}} {\ frac {\ frac {1} {1} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {\ delta ^{\ frac {1} {3}} h t^{\ frac {2} {3}}} $,其中$ s $和$ a $分别是$ \ delta> 0 $的状态和动作的数字是变化预算,$ h $是每集的时间步数,而$ t $是时间步长的总数。我们进一步提出了一种名为Double-Restart Q-UCB的无参数算法,该算法不需要事先了解变化预算。我们证明我们的算法是\ emph {几乎是最佳},通过建立$ \ omega的信息理论下限(s^{\ frac {1} {1} {3}}} a^{\ frac {1} {1} {3}}}}}} \ delta^{\ frac {1} {3}} h^{\ frac {2} {3}}}} t^{\ frac {2} {3}}} $,是非稳态RL中的第一个下下限。数值实验可以根据累积奖励和计算效率来验证RISTARTQ-UCB的优势。我们在相关产品的多代理RL和库存控制的示例中证明了我们的结果的力量。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
We introduce a new setting, optimize-and-estimate structured bandits. Here, a policy must select a batch of arms, each characterized by its own context, that would allow it to both maximize reward and maintain an accurate (ideally unbiased) population estimate of the reward. This setting is inherent to many public and private sector applications and often requires handling delayed feedback, small data, and distribution shifts. We demonstrate its importance on real data from the United States Internal Revenue Service (IRS). The IRS performs yearly audits of the tax base. Two of its most important objectives are to identify suspected misreporting and to estimate the "tax gap" -- the global difference between the amount paid and true amount owed. Based on a unique collaboration with the IRS, we cast these two processes as a unified optimize-and-estimate structured bandit. We analyze optimize-and-estimate approaches to the IRS problem and propose a novel mechanism for unbiased population estimation that achieves rewards comparable to baseline approaches. This approach has the potential to improve audit efficacy, while maintaining policy-relevant estimates of the tax gap. This has important social consequences given that the current tax gap is estimated at nearly half a trillion dollars. We suggest that this problem setting is fertile ground for further research and we highlight its interesting challenges. The results of this and related research are currently being incorporated into the continual improvement of the IRS audit selection methods.
translated by 谷歌翻译
Thompson sampling is one of oldest heuristic to address the exploration / exploitation trade-off, but it is surprisingly unpopular in the literature. We present here some empirical results using Thompson sampling on simulated and real data, and show that it is highly competitive. And since this heuristic is very easy to implement, we argue that it should be part of the standard baselines to compare against.
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
多臂匪徒(MAB)提供了一种原则性的在线学习方法,以达到探索和剥削之间的平衡。由于表现出色和反馈学习低,没有学习在多种情况下采取行动,因此多臂匪徒在诸如推荐系统等应用程序中引起了广泛的关注。同样,在推荐系统中,协作过滤(CF)可以说是推荐系统中最早,最具影响力的方法。至关重要的是,新用户和不断变化的推荐项目池是推荐系统需要解决的挑战。对于协作过滤,经典方法是训练模型离线,然后执行在线测试,但是这种方法无法再处理用户偏好的动态变化,即所谓的冷启动。那么,如何在没有有效信息的情况下有效地向用户推荐项目?为了解决上述问题,已经提出了一个基于多臂强盗的协作过滤推荐系统,名为BanditMF。 BANDITMF旨在解决多军强盗算法和协作过滤中的两个挑战:(1)如何在有效信息稀缺的条件下解决冷启动问题以进行协作过滤,(2)强大社会关系域中的强盗算法问题是由独立估计与每个用户相关的未知参数并忽略用户之间的相关性引起的。
translated by 谷歌翻译