物联网(IoT)的扩散以及对设备进行感应,计算和通信功能的广泛使用,激发了人工智能增强的智能应用程序。经典人工智能算法需要集中的数据收集和处理,这些数据收集和处理在现实的智能物联网应用程序中,由于日益增长的数据隐私问题和分布式数据集。联合学习(FL)已成为一个分布式隐私的学习框架,该框架使IoT设备能够通过共享模型参数训练全局模型。但是,由于频繁的参数传输引起的效率低下会大大降低FL性能。现有的加速算法由两种主要类型组成,包括本地更新,考虑通信与计算之间的权衡以及参数压缩之间的权衡,考虑到通信和精度之间的权衡。共同考虑这两个权衡并适应平衡其对融合的影响尚未解决。为了解决该问题,本文提出了一种新型有效的自适应联合优化(EAFO)算法,以提高FL的效率,该算法通过共同考虑两个变量(包括本地更新和参数压缩)来最大程度地减少学习误差,并使FL能够自适应地调整两个变量和两个变量和两个变量。计算,沟通和精确度之间的平衡权衡。实验结果表明,与最先进的算法相比,提出的EAFO可以更快地实现更高的精度。
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
联合学习(FL)是一个带有边缘计算的充填地的新兴分布式机器学习范式,是具有在移动边缘设备上具有新颖应用的有前途的区域。在FL中,由于移动设备通过共享模型更新,因此在中央服务器的协调下基于其自身的数据进行组合培训模型,培训数据保持私密。但是,在没有数据的核心可用性的情况下,计算节点需要经常传送模型更新以获得汇聚。因此,本地计算时间与将本地模型更新一起创建本地模型更新以及从服务器发送到服务器的时间导致总时间的延迟。此外,不可靠的网络连接可以妨碍这些更新的有效通信。为了解决这些问题,我们提出了一个延迟有效的流动机制,可以减少模型融合所需的总时间(包括计算和通信延迟)和通信轮。探索各种参数对延迟的影响,我们寻求平衡无线通信(谈话)和本地计算之间的权衡(为工作)。我们与整体时间作为优化问题制定了关系,并通过广泛的模拟展示了我们方法的功效。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
联合学习(FL)引发了高通信开销,这可以通过压缩模型更新而大大缓解。然而,网络环境中压缩和模型精度之间的权衡仍不清楚,为简单起见,大多数实现仅采用固定压缩率。在本文中,我们首次系统地检查了该权衡,识别压缩误差对最终模型精度的影响,相对于学习率。具体而言,我们将每个全局迭代的压缩误差因其强大凸面和非凸损耗下的收敛速度分析。然后,我们通过策略性地调整每次迭代中的压缩速率来提高最终模型精度来最大化最终模型精度的适应框架。我们讨论了具有代表压缩算法的实用网络中框架的关键实施问题。对流行的MNIST和CIFAR-10数据集的实验证实,我们的解决方案有效地降低了网络流量,但在FL中保持了高模型精度。
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习框架,可以减轻数据孤岛,在该筒仓中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对训练有素的模型产生了负面影响,并且具有不同本地更新的客户可能会在每个通信回合中对本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法来解决上述非IID数据问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长为局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以自适应调整使目标接近最佳的步骤大小。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
在本文中,我们提出了一种由量化压缩感测的通信高效的联合学习框架。呈现的框架包括用于参数服务器(PS)的无线设备和梯度重建的梯度压缩。我们对梯度压缩的策略是顺序执行块稀疏,尺寸减小和量化。由于梯度稀疏和量化,我们的策略可以实现比单位梯度压缩更高的压缩比。为了从PS的压缩信号中精确聚集局部梯度,我们使用期望最大化通用近似消息传递(EM-GAMP)算法来提出梯度重建的近似最小均方误差(MMSE)方法。假设Bernoulli高斯 - 混合的先前,该算法迭代地更新来自压缩信号的局部梯度的后均值和方差。我们还为梯度重建呈现出低复杂性的方法。在这种方法中,我们使用Bussgang定理来从压缩信号聚合本地梯度,然后使用EM-GAMP算法计算聚合梯度的近似MMSE估计。我们还提供了所提出的框架的收敛速度分析。使用Mnist DataSet,我们证明所呈现的框架几乎可以使用不执行压缩的情况实现几乎相同的性能,同时显着降低联合学习的通信开销。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
联合学习(FL)是一个新的分布式机器学习框架,可以在不收集用户的私人数据的情况下获得可靠的协作培训。但是,由于FL的频繁沟通和平均聚合策略,他们会遇到挑战统计多样性数据和大规模模型。在本文中,我们提出了一个个性化的FL框架,称为基于Tensor分解的个性化联合学习(TDPFED),在该框架中,我们设计了一种具有张力的线性层和卷积层的新颖的张力局部模型,以降低交流成本。 TDPFED使用双级损失函数来通过控制个性化模型和张力的本地模型之间的差距来使全球模型学习的个性化模型优化。此外,有效的分布式学习策略和两种不同的模型聚合策略是为拟议的TDPFED框架设计的。理论融合分析和彻底的实验表明,我们提出的TDPFED框架在降低交流成本的同时实现了最新的性能。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
在联合学习(FL)的新兴范式中,大量客户端(例如移动设备)用于在各自的数据上训练可能的高维模型。由于移动设备的带宽低,分散的优化方法需要将计算负担从那些客户端转移到计算服务器,同时保留隐私和合理的通信成本。在本文中,我们专注于深度,如多层神经网络的培训,在FL设置下。我们提供了一种基于本地模型的层状和维度更新的新型联合学习方法,减轻了非凸起和手头优化任务的多层性质的新型联合学习方法。我们为Fed-Lamb提供了一种彻底的有限时间收敛性分析,表征其渐变减少的速度有多速度。我们在IID和非IID设置下提供实验结果,不仅可以证实我们的理论,而且与最先进的方法相比,我们的方法的速度更快。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
个性化联合学习(PFL)是一种新的联邦学习(FL)方法,可解决分布式用户设备(UES)生成的数据集的异质性问题。但是,大多数现有的PFL实现都依赖于同步培训来确保良好的收敛性能,这可能会导致严重的散乱问题,在这种情况下,训练时间大量延长了最慢的UE。为了解决这个问题,我们提出了一种半同步PFL算法,被称为半同步个性化的FederatedAveraging(Perfeds $^2 $),而不是移动边缘网络。通过共同优化无线带宽分配和UE调度策略,它不仅减轻了Straggler问题,而且还提供了收敛的培训损失保证。我们根据每回合的参与者数量和回合数量来得出Perfeds2收敛速率的上限。在此基础上,可以使用分析解决方案解决带宽分配问题,并且可以通过贪婪算法获得UE调度策略。实验结果与同步和异步PFL算法相比,验证了Perfeds2在节省训练时间和保证训练损失的收敛方面的有效性。
translated by 谷歌翻译
Federated学习(FL)作为保护分布式机器学习框架引起了很多关注,许多客户通过将模型更新与参数服务器交换而不是共享其原始数据来协作训练机器学习模型。然而,FL培训遭受了缓慢的收敛性和不稳定的性能,这是由于客户的异质计算资源引起的散乱者和沟通率的波动。本文提出了一个编码的FL框架来减轻Straggler问题,即随机编码的联合学习(SCFL)。在此框架中,每个客户端通过将附加噪声添加到其本地数据的随机线性组合中,从而生成一个隐私的编码数据集。服务器从所有客户端收集编码的数据集来构建复合数据集,这有助于补偿散布效果。在培训过程中,服务器和客户端执行迷你批次随机梯度下降(SGD),并且服务器在模型聚合中添加了一个化妆术语,以获得无偏的梯度估计。我们通过共同信息差异隐私(MI-DP)来表征隐私保证,并分析联合学习中的收敛性能。此外,我们通过分析隐私约束对收敛率的影响,证明了拟议的SCFL方法的隐私性绩效权衡。最后,数值实验证实了我们的分析,并显示了SCFL在保持数据隐私的同时实现快速收敛的好处。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译